Antibacterial activity, antioxidant potential, total phenolic and flavonoids of three plant species of Rubiaceae from Banggai Island, Indonesia

PRAPTIWITI, DIAH SULISTIARINI, ERLSALIANY NURUL PRATIWI QODRIE, DENI SAHRONI

1Research Center for Chemistry, Indonesian Institute of Sciences. Gd. 452 Bldg. Julian puspitek serpong Gate, Muncul, Kec. Serpong, Kota Tangerang Selatan, Banten 15314 1email: praptiwp@yahoo.com

2Research Center for Biology, Indonesian Institute of Sciences. Jl. Raya Jakarta-Bogor Km. 46 Cibinong, 16911

Abstract. Praptiwi, Sulistiari D, Qodrie ENP, Sahroni D. 2021. Antibacterial activity, antioxidant potential, total phenolic and flavonoids of three plant species of Rubiaceae from Banggai Island, Indonesia. Biodiversitas 22: 2773-2778. The present study was carried out to study the antioxidant and antibacterial potential of different plant parts (stems, leaves, and fruit) of the family Rubiaceae (Timonius celebicus, Psychotria celebica, Gardenia mutabilis) collected from the Banggai Islands. Screening of antibacterial activity against Staphylococcus aureus and Escherichia coli and antioxidant potential was carried out by Thin Layer Chromatography-Bioautography. Determination of IC50 and Minimum Inhibitory Concentration (MIC) was carried out by microdilution in a 96-well microplate. Total phenolic and total flavonoid content was determined by the colorimetric method. Total phenolic (TPC) and total flavonoid content (TFC) was varied from 29.78-380.99 mg GAE/g extract and 105.61-841.18 mg QE/g extract, respectively. The antioxidant capacity of three plant species was varied from moderate to very strong. Antioxidant Activity Index (AAI) was found more affected by TFC than TPC. The antibacterial activity of the extract against E. coli was weak, while some extracts have moderate antibacterial activity against S. aureus.

Keywords: Rubiaceae, Banggai Island, antioxidant capacity, antibacterial

INTRODUCTION

Rubiaceae is a plant family, commonly known for coffee or madder plants. It comprises more than 600 genera and 13,000 species and is mainly distributed in the tropics (Anon 2020). The species diversity of Rubiaceae is ranked fourth among Angiosperms (Davis et al. 2009). Some plant species of this family are used in our everyday life. Some plants are economically important such as coffee, cinchona, noni, gambier, gardenia, and Ixora, due to their chemical properties. These plants are widely used as ornamental, food, and remedy in traditional medicine (Karou et al. 2011). Bioactive metabolites produced by plants of the family Rubiaceae have great pharmacological potential (Martins and Nunez 2015).

The natural chemical compounds and their pharmacological properties from some Rubiaceae plants include iridoids, anthraquinones, triterpenes, indole alkaloids, and other varying alkaloid subclasses (Martins and Nunez, 2015). Among plants of Rubiaceae, coffee (Coffea arabica) is the most economically important and widely known. Caffeine is the main compound in coffee (Coffea arabica) with pharmacological properties as a bronchodilator, diuretic, vasoconstrictor, and central nervous system stimulant (Simões et al. 2004). Cinchona ledgeriana (Rubiaceae) is a rich source of quinine that is active against malaria and responsible for synthetic antimalarial developments (Viegas et al. 2006).

Due to the increased antibiotic resistance, and the risk of infectious disease spread is also increasing. Therefore, it is necessary to search for new antimicrobial compounds. In addition, there is also evidence of increasing degenerative disease associated with free radicals. Free radicals have been associated with the development of several diseases, including cancer, neurodegeneration, and inflammatory diseases (Ferguson 2010). Oxidative stress occurs when there are excessive free radicals in the body cells that caused imbalance with antioxidants and lead to the emergence of several diseases in the long term, including cellular damage, aging, cancer, and hepatic, neurodegenerative, cardiovascular, and renal disorders (Losada-Barreiro et al. 2017).

Banggai Islands are located in Central Sulawesi, Indonesia. Information on the use of the plant of the family Rubiaceae from Banggai is still very limited. Therefore, the present study was conducted to determine the total phenolic, total flavonoids, antioxidant and antibacterial activity of methanol extracts of some important plants of family Rubiaceae from Banggai.

MATERIALS AND METHODS

Sampling sites

Three species of Rubiaceae were collected from Banggai Islands, Central Sulawesi, Indonesia (Figure 1). _Timonius celebicus_ was collected from Tinangkung Village (1°26′27.2″ S, 123°20′19.5″ E), _Gardenia mutabilis_ was...
collected from Saiyong Village (1°24′22.0″ S, 123°19′50.0″ E), while *Psychotria celebica* was also collected from Saiyong Village (1°22′43.1″ S, 123°18′17.8″ E).

Plant materials

Three plant species of Rubiaceae, namely *Timonius celebicus*, *Psychotria celebica*, and *Gardenia mutabilis*, were collected from the Banggai Islands. The plant parts (leaves, stems, and fruits) were separated, cleaned, and dried under sunlight. After drying, the plant parts were grounded into a fine powder 4 and stored it at 4°C for further use.

Extraction

The plant powder was extracted with methanol by maceration thrice. The filtrate was concentrated under reduced pressure by a rotary evaporator. The extract was soaked for 24 hours, and then the filtrate was filtered and concentrated. The remaining solvent was removed with nitrogen and stored at -20°C for further analysis.

Determination of total phenolics (Ismail et al. 2012)

Sixty-eight µL of the extract at the concentration of 1 mg/mL was added with 68 µL of 50% Folin-Ciocalteu reagent and then vortex for 1 minute. Then 1,364 µL of Sodium carbonate (Na₂CO₃) 2% was added to the mixture and incubated for 30 minutes. Sixty-eight µL of gallic acid with a concentration range of 0.031-0.250 mg/mL was used as standard. The standard absorbance of gallic acid and extract was measured at a wavelength of 750 nm with a UV-VIS spectrophotometer. The results are expressed as gallic acid equivalent mg/g of extract.

Determination of total flavonoids (Zou et al. 2004)

Determination of total flavonoids was performed by the colorimetry method. Total 150 µL of samples (1 mg/mL) and quercetin standards with a concentration range of 0.03125-0.5000 mg/mL in ethanol p.a was added with 600 µL of 10% AlCl₃ solution and left for 6 min. The mixture was added with 600 µL of NaOH solution (4%) and added with aqua dest to reach the final volume of 1.5 mL. The mixture was vortexed and incubated for 15 min at room temperature under dark conditions. The solution was measured using a spectrophotometer with a wavelength of 510 nm. Results were expressed in mg quercetin equivalent/g extract.

Determination of antioxidant activity by TLC- DPPH Bioautography

Screening of antioxidant activity was carried out by thin-layer chromatography (TLC)-Bioautography (Dot-Blot and Develop). Dot-Blot: Samples (10 µL in a concentration of 10 mg/mL) was transferred onto a TLC-silica plate (Merck, F254) and cold-dried. TLC plate was sprayed with diphenyl picrylhydrazyl (DPPH) solution in methanol. After 30 minutes, the clear zone around the samples was observed. The yellowish-white area indicated that samples have antioxidant activity. Color intensity showed the antioxidant capacity of samples.

Antibacterial screening by TLC-bioautography

TLC-Bioautography was performed antibacterial for screening of the methanol extracts against *Staphylococcus aureus* (Ina-CC B4) and *Escherichia coli* (Ina-CC B5). Ten µL of the extract (10 mg/mL) was spotted on the TLC plate and immersed in the bacterial suspension. Plates were incubated under humid conditions for 24 h at 37°C. After incubation, plates were sprayed with an aqueous solution of iodonitrotetrazolium (4 mg/mL). The appearance of the white area indicates that extract can inhibit the growth of bacteria. On other plates, the spotted extracts were developed with chloroform: methanol: water (C:M: W) 6:4:1. After the plates were developed, the plates were immersed in the bacterial suspension and incubated at 37°C for 24 h. The plates were then sprayed with iodonitrotetrazolium solution. White bands of spots indicate the active antibacterial compounds.

![Figure 1](image-url)
Determination of Minimum Inhibitory Concentration (MIC)

Minimum Inhibitory Concentration (MIC) is used to classify the antibacterial potential of the extract. It was carried out by microdilution on a 96-well microplate with a lid. Wells in row A were introduced with 100 μL Mueller Hinton Broth (MHB) and 90 μL of sterilized distilled water. Wells in row B to H was introduced with 100 μL Mueller Hinton Broth. After filling the wells with MHB, the wells in row A were added with 10 μL of extract (10.24 mg/mL DMSO) and homogenized. Serial dilution was performed by taking out 100 μL of the mixture in row A and transferred it to row B that has been filled with 100 μL Mueller Hinton Broth in the same column. The same procedure was continued to the last row. At the last row, 100 μL of the mixture was discarded. All work was carried out aseptically in the laminar airflow. After finish diluting, the plates were incubated at 37°C for 24 h. After completing incubation, each well was added with 10 μL iodonitrotetrazolium chloride (INT) (4 mg/mL). Minimum Inhibitory Concentration (MIC) was determined at the lowest concentration that does not change color after INT addition.

Determination of IC50 value for antioxidant activity and antioxidant activity index (AAI)

Determination of IC50 for antioxidant activity by DPPH method was carried out by serial dilution in a 96-well microplate. Each well was filled with 100 μL methanol p.a. except well in row A was filled with 195 μL methanol p.a. Wells in row A was added with 5 μL of extract (20.48 mg/mL) and homogenized. Serial dilution was carried out by transferring 100 μL of the mixture from row A into row B in the same column. It was done to the last row, and at the last row, 100 μL of the mixture was discarded. After finish diluting, each well was added with 100 μL of DPPH (61.5 μL/mL) and incubated for 90 min under dark conditions at room temperature. After incubation, the absorbance of the extract was determined using a microplate reader (Varioscan Flash, Thermo Scientific) at 517 nm. The following equation was used to calculate the inhibitory concentration:

\[IC(%) = \frac{(A_{DPPH\ 100\%} - A_{sample}) \times 100}{A_{sample}} \]

Where:
- IC: inhibitory concentration
- \(A_{DPPH\ 100\%} \): Absorbance of DPPH
- \(A_{sample} \): Absorbance of the sample

A linear regression curve of the inhibitory percentage against extract concentration was drawn to determine the IC50 (El-Abbassi et al. 2012).

Antioxidant Activity Index (AAI) was calculated by the following equation:

\[AAI = \frac{\text{final concentration of DPPH}}{\text{IC50 value}} \]

Data analysis

Duncan’s multiple ranges performed the analysis of variance for TPC and TFC values (DMRT) tests using SPSS 16.0. The experiment was performed in triplicate. It is expressed as mean ± SD.

RESULTS AND DISCUSSION

Total phenolic and flavonoids content of three species of Rubiaceae from

Total phenolic and flavonoids content of methanol extract of T. celebicus, P. celebica, and G. mutabilis collected from Banggai Island were presented in Table 1. The results in Table 1 showed that there are variations in total phenolic content (TPC) and total flavonoid content (TFC), even in the same plant species but in different parts of the plant. The highest TPC (380.99 mg GAE/g extract) and TFC (841.18 mg QE/g extract) was found in the T. celebicus stem extract that is significantly higher (p<0.05) from other extracts. The lowest TPC was in G. mutabilis leaves extract, while the lowest TFC was in G. mutabilis stem extract.

Determination of antioxidant activity by Thin Layer Chromatography (TLC)-Bioautography

Screening of antioxidant activity of three plant species Rubiaceae was performed by Diphenyl pycrid hydradzil (DPPH) method using TLC-Bioautography. The bioautogram results of antioxidant activity (Figure 2.) showed that each extract develops yellowish-white bands. It indicated that each extract contains chemical compounds that might have antioxidant activity as DPPH free radical scavengers. Each extract may contain more than one antioxidant active chemical compounds.

Determination of the antibacterial activity of three species of Rubiaceae

Preliminary screening of antibacterial activity was carried out by TLC-Bioautography against Staphylococcus aureus Ina-CC B4 and Escherichia coli Ina-CC B3. Preliminary screening of antibacterial activity of three species of Rubiaceae against S. aureus and E. coli showed that some extracts could inhibit the growth of bacteria. It showed by halo zone formation. Figure 3 showed that S. aureus more susceptible to Rubiaceae extract.

Table 1. Total phenolic and total flavonoids content of methanol extract of three species of Rubiaceae

<table>
<thead>
<tr>
<th>Sample (extract)</th>
<th>TPC (mg GAE/g extract)</th>
<th>TFC (mg QE/g extract)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. celebicus leaves</td>
<td>258.76 ± 0.132</td>
<td>731.39 ± 0.210</td>
</tr>
<tr>
<td>T. celebicus stem</td>
<td>380.99 ± 0.132</td>
<td>841.180 ± 0.000</td>
</tr>
<tr>
<td>P. celebica bark</td>
<td>131.690 ± 0.024</td>
<td>288.910 ± 0.182</td>
</tr>
<tr>
<td>P. celebica leaves</td>
<td>157.400 ± 0.083</td>
<td>288.910 ± 0.083</td>
</tr>
<tr>
<td>P. celebica fruit</td>
<td>239.420 ± 0.000</td>
<td>505.060 ± 0.189</td>
</tr>
<tr>
<td>G. mutabilis leaves</td>
<td>89.486 ± 9.659</td>
<td>426.820 ± 0.091</td>
</tr>
<tr>
<td>G. mutabilis stem</td>
<td>39.924 ± 26.835</td>
<td>105.610 ± 0.139</td>
</tr>
<tr>
<td>G. mutabilis leaves</td>
<td>29.778 ± 2.315</td>
<td>123.760 ± 2.315</td>
</tr>
</tbody>
</table>

Notes: TPC: Total phenolic content; TFC: Total flavonoids content; GAE: gallic acid equivalent; QE: quercetin equivalent
Correlation to AAI related to antioxidant activity. Total flavonoids content (TFC) showed a moderate correlation to the antioxidant activity of the extract. TFC has more effect than TPC on the antioxidant activity of Rubiaceae extract in this study.

Discussion
Rubiaceae is one of the most widely used plant families in traditional medicine due to its bioactive compounds with pharmacological potential (Karou et al. 2011; Martins and Nunez 2015). One of the chemical components in Rubiaceae is flavonoids and phenolic derivatives (Martins and Nunez 2015). Results in Table 1 showed variations in TPC and TFC. It showed that TPC and TFC in T. celebicus stem extract were significantly higher than those in leaves extract.

Table 2. IC50 value and AAI of methanol extract of three species of Rubiaceae

<table>
<thead>
<tr>
<th>Sample (extract)</th>
<th>IC50 (µg/mL)</th>
<th>AAI</th>
<th>Category of antioxidant</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. celebicus leaves</td>
<td>10.33</td>
<td>3.390±0.800</td>
<td>Very powerful</td>
</tr>
<tr>
<td>T. celebicus stem</td>
<td>7.64</td>
<td>4.197±0.540</td>
<td>Very powerful</td>
</tr>
<tr>
<td>P. celebica bark</td>
<td>4586</td>
<td>0.673±0.020</td>
<td>Moderate</td>
</tr>
<tr>
<td>P. celebica leaves</td>
<td>12.62</td>
<td>2.384±0.362</td>
<td>Very powerful</td>
</tr>
<tr>
<td>G. mutabilis leaves</td>
<td>51.67</td>
<td>5.724±5.511</td>
<td>Very powerful</td>
</tr>
<tr>
<td>G. mutabilis stem</td>
<td>5.17</td>
<td>0.736±0.042</td>
<td>Moderate</td>
</tr>
<tr>
<td>G. mutabilis leaves</td>
<td>41.24</td>
<td>0.602±0.065</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Note: Values in each column with the different letters are significantly different (P<0.05). Statistical criteria of AAI values for extract follows: weak < 0.5 < Moderate < 1 < Strong < 2 < very strong (Schreer and Godoy 2009).

Table 3. Minimum Inhibitory Concentration of methanol extract of three species of Rubiaceae

<table>
<thead>
<tr>
<th>Sample (extract)</th>
<th>MIC (µg/mL) S. aureus</th>
<th>Category</th>
<th>MIC (µg/mL) E. coli</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. celebicus leaves</td>
<td>>256</td>
<td>Weak</td>
<td>>256</td>
<td>Weak</td>
</tr>
<tr>
<td>T. celebicus stem</td>
<td>>256</td>
<td>Weak</td>
<td>>256</td>
<td>Weak</td>
</tr>
<tr>
<td>P. celebica bark</td>
<td>>256</td>
<td>Weak</td>
<td>>256</td>
<td>Weak</td>
</tr>
<tr>
<td>P. celebica leaves</td>
<td>>256</td>
<td>Weak</td>
<td>>256</td>
<td>Weak</td>
</tr>
<tr>
<td>G. mutabilis leaves</td>
<td>>256</td>
<td>Weak</td>
<td>>256</td>
<td>Weak</td>
</tr>
<tr>
<td>G. mutabilis stem</td>
<td>>256</td>
<td>Weak</td>
<td>>256</td>
<td>Weak</td>
</tr>
<tr>
<td>G. mutabilis leaves</td>
<td>>256</td>
<td>Weak</td>
<td>>256</td>
<td>Weak</td>
</tr>
</tbody>
</table>

Table 4. Pearson correlation coefficient (r) between TPC, TFC values, and Antioxidant Activity Index (AAI)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Pearson Coefficient®</th>
<th>Correlation</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC value</td>
<td>0.360</td>
<td>weak</td>
<td></td>
</tr>
<tr>
<td>TFC value</td>
<td>0.504*</td>
<td>moderate</td>
<td></td>
</tr>
</tbody>
</table>

Note (*): Correlation is significant at the 0.05 level (2-tailed)
Sembiring et al. (2018) reported that phytochemical compounds in the different plant parts might differ, affecting their pharmacological activity. Secondary metabolites, including TFC and TPC, were affected by many factors, such as soil, irrigation, and climatic conditions, affect phenolic concentrations and other secondary metabolites (Chandra et al. 2014). Phenolic and flavonoids have important biological activities such as antioxidant (Murakami et al. 2004), anti-inflammatory (Araujo and Leon 2001), and antioxidative activity (Ghasemzadeh et al. 2011) that are beneficial for human health. The antioxidative activity of phenolic and flavonoids was due to their ability as free radical scavengers (Shahidi et al. 1992), and reducing agents (Ghasemzadeh and Ghasemzadeh 2011), singlet oxygen quenchers, and hydrogen donors (Rice-Evans et al. 1996; Ramarathnam et al. 1997). Phenolic compounds can protect lipids from peroxidation and inhibit enzymes from oxidizing (Cos et al. 1998).

Assessment of antioxidants was performed by DPPH free radical scavenging activity using TLC-Bioautography as it is a fast and straightforward method. The results showed several white-yellowish spots or bands on the TLC plate’s purple background after spraying with DPPH solution in methanol. Changes color of purple-blue of DPPH to yellow due to the unpaired electrons of DPPH is paired with electrons of antioxidative compounds to become reduced DPPH-H (diphenyl picryl hydrazine) (Cai et al. 2003) which decreases the absorption (Dephour et al. 2007). The antioxidative capacity of extract was determined by IC50 value and antioxidative activity index (AAI). Table 2 showed that 5 extracts have potent antioxidant activity, while 3 extracts have moderate antioxidative antioxidant activity. The antioxidative activity positively correlated with TPC and TFC (Table 4.), and the TFC has more effect (moderate correlation) on antioxidative activity than TPC (weak correlation) caused by hydroxyl groups in flavonoids (Das and Pereira 1990). However, structure differences in flavonoids affect the antioxidative capacity (Wojdylo et al. 2007).

TLC-Bioautography was also used to determine the qualitative antibacterial activity of extracts. Bioautography can detect antimicrobial compounds rapidly. It allows detecting antimicrobial activity directly on the TLC plate by forming a white zone (Navarro 1998). Purple background on the TLC plate was caused by the conversion of tetrazoium salt to intensely colored formazan by dehydrogenase enzymes in living microorganisms (Grzelak et al. 2013). A microdilution assay determined the sensitivity differences of extracts and bacteria to determine the minimum inhibitory concentration (MIC). The results in Table 3 showed that 4 extracts have moderate antibacterial activity against S. aureus, while all extracts have weak antibacterial activity against E. coli. It seems that S. aureus was more sensitive to the extracts. The differences in the sensitivity between S. aureus (Gram-positive bacteria) and E. coli (Gram-negative bacteria) might be due to cell wall structure differences. Gram-negative bacteria are more resistant to antibacterial components because of the periplasmic space and lipopolysaccharide layer (Koohsari et al. 2015).

In conclusion, the extracts of three plant species of Rubiaceae (F. celebicus, P. celebica, and G. mutabilis) collected from the Banggai Islands contain bioactive compounds with antibacterial or antioxidant activity. However, these extracts have better activity as antioxidants than antibacterial. Therefore, bioactive compounds from these extracts should be isolated and purified in further study.

ACKNOWLEDGEMENTS

The authors thank Florentina Indah Windradi for collecting Rubiaceae samples. There is no conflict of interest regarding the publication of this paper. The main contributor to this manuscript is P (the first author).

REFERENCES

