Diversity of medicinal plants and their uses by the Sanger tribe of Sangihe Islands, North Sulawesi, Indonesia

DINGSE PANDIANGAN1,*, MARINA SILALAHI1, FARHA DAPAS2, FEBBY KANDOU1

1Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Bahu, Manado 95115, North Sulawesi, Indonesia. Tel./fax: +62-431-863786, *email dingspem@unsrat.ac.id, dingspem@yahoo.com
2Department of Biology Education, Faculty of Education and Teacher Training, Universitas Kristen Indonesia. Jl. Mayjen Sutoyo No. 3, Cawang, Jakarta 13510, Indonesia

Abstract. Pandiangan D, Silalahi M, Dapas F, Kandou F. 2019. Diversity of medicinal plants and their uses by the Sanger tribe of Sangihe Islands, North Sulawesi, Indonesia. Biodiversitas 20: 621-631. The Sanger tribe is an indigenous tribe in Sangihe Islands, North Sulawesi, who still continue to use traditional medicinal plants. The objectives of this study were to document the diversity of medicinal plants and their general uses by the Sanger tribe in the selected villages of Sangihe Islands and to identify plants that have anti-cancer potential. The study was conducted with ethnobotanical approach using survey and interviews among 90 respondents selected from 9 study villages located in 3 sub-districts of Sangihe Islands. The study showed that 118 species of medicinal plants belonging to 47 families had been used by the Sanger tribe to treat 39 different types of diseases. Thirteen (13) species each were used for treating fever and ulcers, 12 species in the treatment of poisoning, 10 species each for cough and kidney diseases, 8 species for each of the diabetes mellitus and cancer or tumors, and 7 species each for itching, hypertension, physical injury and blood circulation disorders. For other diseases, the number of plant species used as medicines varied from 1 to 6. Leaves were the most predominantly used part for medicinal purposes as this was used in case of 73 species, followed by stems (37 species), roots (29 species), flowers (25 species), fruits (20 species) and seeds (17 species). Twenty percent (20%) of the recorded medicinal plants were consumed directly and others after different methods of processing and preparation, such as boiling (51%), crushing (15%), roasting (2%), soaking (16%) and pasting (7%), and a species can be used more once. A utilization of Dischidia nythesiana as medicines for cancer/tumor by the Sanger tribe has not been reported before.

Keywords: Crotalaria striata, Dischidia nythesiana, Eleutherine americana, medicinal plant diversity, Sanger tribe

INTRODUCTION

Indonesia is an archipelago with more than 17,000 islands, about 300 ethnic groups and 30,000 plant species (Indrawan et al. 2007). Plants are used for various purposes by the native tribes, mainly in their practice of traditional medicines. Research to discover medicinal properties of plants have been performed in various ways, such as by screening for biologically active secondary compounds, taxonomical studies and ethnomedical approach (Martin 1995) as well as through scrutiny of ancient manuscripts (Navangnirgun et al. 2004).

An ethnomedical approach is a research method with efficient use of the time and cost for discovering new chemical compounds for development of new medicines (Fabricant and Farnsworth 2001; Purwanto 2002), especially for chronic problems like cancer and tumors. Fabricant and Farnsworth (2001) stated that as many as 80% of drugs used globally have similar benefits with ethnomedicine. Some ethnmedicine drugs derived from quinine were adapted from indigenous knowledge of the Incas who have long used Cinchona as an anti-malarial drug (Achan et al. 2011). Moreover, legundi (Vitex trifolia) which is used as an expectorant is derived from the Javanese local wisdom (Walhoyo 2008).

More ethnobotanical documentation studies are needed to intensify the research on medicinal plants, which are used by the local communities, especially since there is a tendency of high rate of erosion of local knowledge (Hoang et al. 2008). Moreover, the rate of species loss is almost parallel to the rate of loss of local knowledge (Hoang et al. 2008; Kartawinata 2010). The main objective of this research was to identify the potential medicinal plants, especially for cancers, since they are still very limited.

Cancer is the leading cause of death nowadays. Medical treatment and prevention of cancer have been carried out through removal of tumors, chemotherapy or radiotherapy (Pandiangan and Kandou 2006). Compounds that play roles in commercial cancer treatment are vincristine and vinblastine, belonging to the group of alkaloids (Alexandrova et al. 2000). They can be extracted directly from plants or produced from their precursors that are extracted from plants. Efforts to identify more plants for cancer treatment are needed. Silalahi et al. (2015b) reported that Hoya sp. and Dischidia sp. are used for cancer treatment as advertised by the medicinal herb sellers of traditional markets in Kabanjahe, North Sumatra, Indonesia.

To explore new sources of information on the use of herbs as medicines, various ethnomedicinal studies have been carried out, but they have been mostly focused on Java, Bali and some areas of Sumatra, while from other islands, such studies are very limited. Sulawesi is a unique
island due to its biodiversity that is a combination of the western and eastern parts of Indonesia. This phenomenon has resulted in a variety of distinctive plants found only in Sulawesi, which is also the reason for the diversity of their utilization. Some studies have been attempted to inventory the medicinal plants of some regions of Sulawesi such as the Bolaang Mongondow district (Pangemanan and Rondonuwu 1991; Wardah and Danimiharja 1996; Windardi and Uji 1996; Widadeti and Roemantyo 1996; Simbala and Potabuga 2002; Bulut 2005). However, the Sanger tribe of Sangihe Island has not been studied yet in this regard.

The Sangihe Islands are a group of islands separated from the mainland Sulawesi, which is inhabited by the Sanger tribe. Documentation of medicinal plants have been carried out in Central Tabukan (Talengen, Gunung, and Tariang Baru Villages), South Tabukan (Pintareng Village) and Tahunah (Tahunah Village) by Pandiangan and Kandou (2006) and Mulalinda (2006). However, other islands in the area have not been studied yet. Kandou and Pandiangan (2006) found that medicinal plants rich in alkaloids, such as Catharanthus roseus, Carica papaya, Coleus scutellarioides (mayana), Coleus amboinicus (panise), Codiaeum variegatum (kalubahangi), Ficus emery (hope), Melaleuca bracteata (balakama), Peperomia pellucida (suruhan), Piper betel, Cassitha filiformis (taliputri), Morinda citrifolia (seha) and Persea gratissima were found here. Therefore, this study was undertaken with the objectives of determining the diversity of medicinal plants and their use by the Sanger tribe in the Sangihe Islands in general and identifying the medicinal plants which are used in cancer treatment, in particular.

MATERIALS AND METHODS

Study area

The study was conducted from January to July 2017, in nine villages located in Sangihe Islands District and Sitaro (Siau Tagulanlantang Biaro) Islands District, North Sulawesi Province, Indonesia (Figure 1). The Sangihe Islands consist of 105 islands of which 79 islands are uninhabited and 26 islands are inhabited, while Sitaro Islands consist of 47 islands of which 37 islands are uninhabited and 10 islands are inhabited by the Sanger ethnic group. The Sangihe Islands are geographically located between 2°43’- 4° 44’22” N and 125°9’28”- 125°56’57” E; while Sitaro Islands are located between 2°4’13”-2°52’47” N and 125°9’28” - 125°24’25” E (BPS 2017, 2018). The villages selected for the present study were Lesa, Tapuang, and Batulewehe of East Tahunah sub-district of Sangihe Islands District; Mala, Naha, and Kalakube of North Tabukan sub-district of Sangihe Islands District; and Lumbo, Bawoleu, and Bawo of North Tagulanlantang sub-district of Sitaro Islands District.

Sanger tribe

Majority of people belonging to Sanger tribe are fishermen, living in the coastal areas, and farmers who live in the mountain areas. The farmers mainly cultivate coconut (Cocos nucifera), nutmeg (Myristica fragrans) and clove (Syzygium aromaticum) (Figure 2).

Data collection

Data was collected through ethnobotanical approach of semi-structured, in-depth interviews and participatory observations. A group of 90 respondents, which consisted of 10 people from each of the study village, were interviewed. The respondents were religious leaders, staff of the village administrative office, respected elders of the village and traditional healers who were selected using purposive snowball sampling method. Herbarium specimens of medicinal plants were collected and their local names, parts used and method of utilization was noted along with uses.

![Figure 1. The research sites in the North Tabukan (1) and East Tahunah (2) sub-districts of Sangihe Islands District and North Tagulanlantang (3), Sitaro Islands District, North Sulawesi Province, Indonesia](image)
Interviews were based on modified methods of Martin (1995), Alexiades and Sheldon (1996) and Kandou and Pandiangan (2006). Medicinal plants collected from the field were identified refer to Backer and Bakhuizen v.d. Brink (1963-1968). The botanical names of the plants were then verified using the online www.theplantlist.org database version 2017.

Data analysis

The ethnomedicinal data collected in this study were analyzed qualitatively and quantitatively. The index of similarity and inequality was calculated using Jaccard Index (Ji) equation (Mueller-Dombois and Ellenberg 1974; Krebs 1978).

Jaccard index (Ji) was calculated using the equation:

\[
J_i = \frac{a}{a + b + c}
\]

Where:
\(a\): Number of species found in villages A and B
\(b\): Number of species found in village A, but not found in village B
\(c\): Number of species found in village B, but not found in village A

RESULTS AND DISCUSSION

Medicinal plants used by the Sanger tribe

The Sanger tribe was found to be using a total of 118 species of plants as medicinal, which belongs to 46 families. Table 1 provides family-wise list of all these plants with information on their local names, scientific names, uses, habit and location or villages where the plants were found. The number of species of medicinal plants recorded in this study was lower than that of the Batak Simalungun tribe (Silalahi et al. 2015a) and Batak Karo tribe (Purba et al. 2016), but higher than that of the Lahat tribe (Harmida and Yuni 2010). The number of species recorded during ethnobotanical studies is strongly influenced by the natural plant diversity of the study area as well as the number of respondents. Anwar et al. (1984) stated that Sumatra has a very high floral diversity, with about 10,000 species of plants, while the Sangihe Islands are floristically less diverse. The species diversity within the area is directly proportional to the total area of the islands (Cox and Moore 2008).

Plant family-wise analysis of medicinal plants indicated that Lamiaceae (11 species), Euphorbiaceae (9 species), Acanthaceae (7 species), Zingiberaceae (6 species), Malvaceae (5 species) and Verbenaceae (5 species) were the families with largest number of species found in the study. Lamiaceae members were the most often found plants since they do not require any special maintenance, are resistant to deficiency and excess of water, and are easily propagated through cuttings and seeds. Three species collected in the present study were identified only to the genus level. They are *tate filipina* (*Coleus* sp.2), *panesse* (*Coleus* sp.1), and *betadin* (*Sterculia* sp.). The plant called *tate filipina* (*Coleus* sp.2) has been known as a cure for cancer. The limitations in collecting the plant specimens were the major constraints for further identification of these unidentified species.

Members of Acanthaceae have been used to treat various diseases, such as increasing the number of blood cells (*Asystasia gangetica, Hemigraphis colorata*), fever (*Gruptophilum pictum*), malarial fever (*Andrographis paniculata*), kidney disease (*Strobilanthes crispus*), and toothache (*Barleria priotitis*). Lamiaceae members are used for treating fever (*C. ambinicum*), cough (*C. scutellaroides*) and heart disease (*Pogostemon hedgei*). Moreover, there are three species of the Euphorbiaceae family that are known to treat cases of poisoning: *Jatropha curcas, Phyllanthus niruri* and *Euphorbia antiquorum*.

Some of the medicinal plants found useful in this study have already been reported to be medicinal by earlier studies and they mainly belong to Zingiberaceae family, such as *Curcuma longa, Alpinia galanga, Zingiber officinale* and, *Curcuma xanthorrhiza* (Silalahi et al. 2015a,b). However, medicinal uses of species, such as *Clerodendrum sahelangi, Leucas lavandulifolia*,

![Figure 2. Research sites in Lumbo Village, North Sulawesi, Indonesia showing coconut cultivation in coastal lowland area (left), and cultivation of nutmeg in mountainous area (right).](image-url)
Clerodendrum calamitosum, Talinum triangulare, Abelmoschus manihot, Eleutherine americana, Coleus sp., Pedilanthus tithymaloides, Dischidia nythessiana, Euryales amboinensis and Barleria prionitis are new since they have not been reported before.

Analysis of number of medicinal plants employed to treat various diseases showed that a maximum number of 13 species each were used to treat fever and ulcers. Other major diseases were poisoning (12 species), cough (10 species), kidney disorders (10 species), diabetes (8 species), cancer/tumors (8 species), itching (7 species), hypertension (7 species), injuries or cuts (7 species) and circulation disorders (7 species). Medicinal plants were also used to treat about 28 other diseases and the number of species used against each such disease varies from one to six (Figure 3).

The plants that were found to be used to treat fever were Hemigraphis colorata, Pluchea indica, Euphorbia thymifolia, J. curcas, C. amboinicus, Oxalis corniculata, and Piper betel. The utilization of Piper betel and J. curcas to treat fever has also been reported from the Batak Simalungun (Silalahi et al. 2015a), Karo (Purba et al. 2016) and Minang (Khairiah 2017) tribes. There is a belief among the villagers that certain plants are ‘cold’ in nature, thus they can be used to treat fever and lower the patient’s body temperature.

Silalahi et al. (2015a) stated that the Simalungun ethnic group use plants that have coarse leaves to treat kidney disorders. The Sanger tribe uses Orthosiphon spicatus and S. crispus to treat kidney disorders. They are both known as diuretics and the leaf of Orthosiphon spicatus has also been listed as diuretic (MoH 1977). The local people also exchange information on the medicinal uses of plants with other communities.

The local use of Artemisia vulgaris, Momordica charantia, P. niruri, J. curcas to treat cases of poisoning may be considered as relatively new reports. P. niruri has been known as a diuretic J. curcas is known to cure fever and M. charantia has been reported to be used in the treatment of diabetes (Wijayakusuma 1996a, 1996b, 1996c, 2000). The Sanger ethnic group has been using about 12 species to treat cases of poisoning, such as bites of snakes, insects and other animals. For medicinal purposes, the plants are consumed fresh or as a simple extract in water. Parts of the plants that are believed to be having medicinal properties are usually boiled and then consumed with added palm sugar.

A total of eight species of medicinal plants were used in cancer or tumor treatment. They are D. nythessiana, A. vulgaris, Crotalaria striata, E. americana, Catharanthus roseus, Philippines Coleus sp. 1., Derris elliptica and Coleus sp. 2. Catharanthus roseus has long been used for cancer treatment because it produces the alkaloid vincristine and vinblastine, the compounds that have been shown to inhibit the growth of cancer cells. Thus, this plant, which originated from Madagascar, has been commercialized as a medicine for cancer. D. nythessiana, A. vulgaris, C. striata, and E. americana have also been known as cancer drugs.

As many as 79 species of the medicinal plants used by the Sanger tribe have been cultivated, while the remaining 39 species were found in the wild. The wild plants can be found in roadsides, in gardens growing wild and also in the forest. The medicinal plants that are often cultivated by the locals are those with additional benefits, such as spices (C. longa, A. galanga, Z. officinalis), hedgerow (J. curcas, S. crispus), vegetables (C. amboinicus, Allium cepa), and fruit trees (Carica papaya, Annona muricata).

Different parts of the plants are utilized for medicinal purposes. The parts used in current study are the roots (29 species), stems (37 species), leaves (73 species), flowers (25 species), fruits (20 species) and seeds (17 species) (Fig. 4). Among all parts of a plant, medicinal property is mainly found in the leaves (36%), followed by stems (18%), roots (14), flowers (13%), fruits (10%) and seeds (9%).

The methods of preparation of the medicinal plants were boiling in water (51%), crushing (15%), direct consumption (20%), roasting (2%), soaking (16%) and pasting (7%). Medicinal plants that are consumed directly can be done by eating plant parts or parts of the extract. One type of plant can be used in more ways, this results in a total plant of more than 100%. For example, the Piper betle, C. longa can be used directly, that is by taking fresh extracts or by stirring first. Boiling, as a method of preparation, is seen to be more hygienic and simpler for consumers. Moreover, boiling in water helps to lower the level of bitterness, and the secondary metabolites present in the plants get dissolved in water (Harborne 1987). Thus, boiling results in the extraction of the active compounds and, therefore, it increases the efficacy of the medicinal preparations.

Potential anti-cancer plants

The Sanger tribe uses a total of eight species of medicinal plants for the treatment of cancer, or tumor D. nythessiana is a new report. D. nythessiana, A. vulgaris, C. striata, E. americana and Coleus sp. that belong to four different families. The Sanger tribe believes that cancer or tumor is difficult to cure and they often result in death. Local people recognize cancer with symptoms of large lumps in the body, and cause interference with all parts of the body. Treatment for cancer is done by taking various Dischidia herbs for a long time. Alkaloid from Catharanthus roseus, such as vincristine and vinblastine, as well as taxol from Taxus sp. are commercially available cancer drugs that are extracted from plants (Munim and Hanani 2011). Tests on anti-cancer activity are mostly done in vitro using cell line.

Biodiversitas 20 (2): 621-631, February 2019
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Local name</th>
<th>Uses</th>
<th>Villages</th>
<th>Lifeform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andrographis paniculata (Burn.f.) Nees</td>
<td>Sambiloto</td>
<td>Malaria fever, Liver problems</td>
<td>TG, BE, LA, BO</td>
<td>Herb</td>
</tr>
<tr>
<td>Asystasia gangetica And.</td>
<td>Bungang hisa</td>
<td>Anemia</td>
<td>LO, BU</td>
<td>Shrub</td>
</tr>
<tr>
<td>Barleria prionitis L.</td>
<td>Kalu burung</td>
<td>Scabies, itching, toothache</td>
<td>TG, LA, NA</td>
<td>Shrub</td>
</tr>
<tr>
<td>Graptopetalum pictum L.</td>
<td>Limpadaleng</td>
<td>Ulcer</td>
<td>NA, LO</td>
<td>Shrub</td>
</tr>
<tr>
<td>Hemigraphis colorata L.</td>
<td>Marilah</td>
<td>Cough, bleeding, fever, anemia</td>
<td>TG, BE, LA, MA, LO, BU</td>
<td>Herb</td>
</tr>
<tr>
<td>Justicia gendarussa Burm. f.</td>
<td>Ngghusa</td>
<td>Gout, cholera</td>
<td>TG, NA, MA, LO, BU, BO</td>
<td>Shrub</td>
</tr>
<tr>
<td>Strobilanthes crispus Blume</td>
<td>Kaca beling</td>
<td>Kidney disease</td>
<td>TG, BE, LA, NA, LO, BO</td>
<td>Herb</td>
</tr>
<tr>
<td>Alliaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allium cepa L.</td>
<td>Lansuna mahamu</td>
<td>Ulcer</td>
<td>LA, LO, BU</td>
<td>Herb</td>
</tr>
<tr>
<td>Allium schoenoprasum L.</td>
<td>Ganda</td>
<td>Hypertension, diarrhea, dysentry</td>
<td>TG, BE, LA, NA, KE, MA, LO, BU, BO</td>
<td>Herb</td>
</tr>
<tr>
<td>Amaranthaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amaranthus spinosus L.</td>
<td>Bayam putih</td>
<td>Ulcer</td>
<td>NA, KE, BU</td>
<td>Herb</td>
</tr>
<tr>
<td>Celtis argentea L.</td>
<td>Kaliapa umbohon</td>
<td>Anemia</td>
<td>TG, LA, NA</td>
<td>Herb</td>
</tr>
<tr>
<td>Celosia cristata L.</td>
<td>Sashihungu manu</td>
<td>Measles</td>
<td>LA, NA</td>
<td>Herb</td>
</tr>
<tr>
<td>Amaryllidaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euryalesamboinensis Loud</td>
<td>Walantuluhi</td>
<td>Ulcer</td>
<td>TG, BO</td>
<td>Herb</td>
</tr>
<tr>
<td>Annonaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annona muricata L.</td>
<td>Nangka walaenda</td>
<td>Gout, stomach ache, heart disease, headache</td>
<td>LA, NA, MA, BO</td>
<td>Tree</td>
</tr>
<tr>
<td>Apiaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centella asiatica L. Urban</td>
<td>Dalimase</td>
<td>Kidney disease, Chicken fox</td>
<td>TG, BE, KE, MA, LO, BU, BO</td>
<td>Herb</td>
</tr>
<tr>
<td>Foeniculum vulgare Mill.</td>
<td>Anis</td>
<td>Cough</td>
<td>BO</td>
<td>Herb</td>
</tr>
<tr>
<td>Apocynaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alstonia scholaris R. Br</td>
<td>Galiti</td>
<td>Malaria fever, headache</td>
<td>BO</td>
<td>Tree</td>
</tr>
<tr>
<td>Catharanthus roseus (L.) G. Don.</td>
<td>Gendola</td>
<td>Diabetes mellitus, cancer, hypertension</td>
<td>LA, NA, KE, MA, LO, BU, BO</td>
<td>Herb</td>
</tr>
<tr>
<td>*Plumeria acuminata Ait</td>
<td>Kamboja</td>
<td>Ulcer</td>
<td>BE</td>
<td>Tree</td>
</tr>
<tr>
<td>Araeaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homalomena occulta (Lour.) Schott.</td>
<td>Kalintama</td>
<td>Stroke</td>
<td>BU</td>
<td>Herb</td>
</tr>
<tr>
<td>Arecaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areca catechu L.</td>
<td>Tilade</td>
<td>Diabetes mellitus, diarrhea, dysentry</td>
<td>TG, LA, NA, KE, BU</td>
<td>Tree</td>
</tr>
<tr>
<td>Arenga pinata (Wurmb) Merr.</td>
<td>Pohon seho</td>
<td>Kidney disease</td>
<td>LO, BU</td>
<td>Tree</td>
</tr>
<tr>
<td>Araliaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nothopanax scutellarium Merr</td>
<td>Daun mangkok</td>
<td>Hair loss</td>
<td>BE</td>
<td>Herb</td>
</tr>
<tr>
<td>Panax ginseng C.A. Mey</td>
<td>Ginseng</td>
<td>Aphrodisiac</td>
<td>LO</td>
<td>Herb</td>
</tr>
<tr>
<td>Asclepiadaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disichidia nythethiana</td>
<td>Lintakuhi</td>
<td>Cancer</td>
<td>LO, BO</td>
<td>Herb</td>
</tr>
<tr>
<td>Asteraceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artemisia vulgaris L.</td>
<td>Daun tatutup</td>
<td>Heart disease, poisoning, cancer</td>
<td>TG, NA, KE, BO</td>
<td>Herb</td>
</tr>
<tr>
<td>Gynura sp.</td>
<td>Daun berkat</td>
<td>Diabetes mellitus</td>
<td>TG, BU, BO</td>
<td>Herb</td>
</tr>
<tr>
<td>Pluchea indica L.</td>
<td>Balontas</td>
<td>Fever</td>
<td>LO, BO</td>
<td>Herb</td>
</tr>
<tr>
<td>Splanthes ocmifolia Moore</td>
<td>Ruku sinsing</td>
<td>Diabetes mellitus, toothache</td>
<td>LO</td>
<td>Herb</td>
</tr>
<tr>
<td>Balsaminaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impatiens balsamina L.</td>
<td>Laka</td>
<td>Injury, dysentry</td>
<td>TG, LA, NA, MA, BU</td>
<td>Herb</td>
</tr>
<tr>
<td>Bromeliaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annanas comosus L. (Merr.)</td>
<td>Nanasi</td>
<td>Kidney disease</td>
<td>KE, LO, BU</td>
<td>Herb</td>
</tr>
<tr>
<td>Caesalpiniaeae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassia alata L.</td>
<td>Kalumparehi</td>
<td>Scabies, fracture</td>
<td>BU, BO</td>
<td>Herb</td>
</tr>
<tr>
<td>Caricaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carica papaya L.</td>
<td>Kapala</td>
<td>Hypertension, worm disease</td>
<td>MA, LO, BU</td>
<td>Herb</td>
</tr>
<tr>
<td>Commelinaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhoe discolor (L. Her) Hance</td>
<td>Adam dan hawa</td>
<td>Hypertension</td>
<td>TG, BE, LA, LO, BU, BO</td>
<td>Herb</td>
</tr>
<tr>
<td>Convolvulaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ipomoea per-caprae (L.) Sweet</td>
<td>Batata pante</td>
<td>Sprain</td>
<td>BO</td>
<td>Herb</td>
</tr>
<tr>
<td>Cucurbitaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Momordica charantia L.</td>
<td>Papare</td>
<td>Poisoning, body odor</td>
<td>TG, NA</td>
<td>Herb</td>
</tr>
<tr>
<td>Family</td>
<td>Species</td>
<td>Use</td>
<td>Part Used</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------------------</td>
<td>------------------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Euphorbia antigiouran L.</td>
<td>Poisoning</td>
<td>BE, LO, BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Euphorbia hirta L.</td>
<td>Cataract</td>
<td>TG, LA, KE, LO BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Euphorbia thyrmifolia L.</td>
<td>Fever</td>
<td>KE, BU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Euphorbia tiracalli L.</td>
<td>Fracture</td>
<td>TG, BU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jatropha curcas L.</td>
<td>Fever, itching, kidney disease, gastrointestinal disorder, fever, poison disease</td>
<td>TG, BE, LA, NA, KE, MA, LO, BU, BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jatropha gossypifolia L.</td>
<td>Typhoid fever, Childbirth</td>
<td>NA, LO</td>
<td></td>
</tr>
<tr>
<td>Pedilanthus</td>
<td>Pedilanthus tithymaloides (L.) Poit</td>
<td>Venomous bites</td>
<td>TG, LO</td>
<td></td>
</tr>
<tr>
<td>Phyllanthus</td>
<td>Phyllanthus niruri L.</td>
<td>Kidney disease, poison disease</td>
<td>TG, LA, KE</td>
<td></td>
</tr>
<tr>
<td>Sauropsis</td>
<td>Sauropsis androgious Merr.</td>
<td>Increase breast milk</td>
<td>NA, MA, LO</td>
<td></td>
</tr>
<tr>
<td>Lamiaeaceae</td>
<td>Coleus amboinicus Lour</td>
<td>Fever, fracture</td>
<td>BE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coleus blumei Benth</td>
<td>Internal disease</td>
<td>BL, BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coleus scutellariaoides (L.) Benth</td>
<td>Cough, poisoning</td>
<td>TG, NA, KE, LO, BU, BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coleus sp.1</td>
<td>Cough</td>
<td>TG, BE, LA, LO, BU, BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coleus sp.2</td>
<td>Cancer</td>
<td>TG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leucalavanduli folia Smith</td>
<td>Nose bleeding</td>
<td>LA, BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mentha crispa Rumpfi</td>
<td>Gastrointestinal disorder</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ocimum basilicum L.</td>
<td>Scabies, headache</td>
<td>TG, LA, NA, KE</td>
<td></td>
</tr>
<tr>
<td>Orthosiphon</td>
<td>Orthosiphon spicatus B.B.S</td>
<td>Kidney disease, poisoning</td>
<td>TG, BE, NA, LO, BO</td>
<td></td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Pogostemon cablin (Blanco) Benth</td>
<td>Hair care</td>
<td>TG, LO, BU, BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pogostemon hedgei Vs.Kumar & B.D.Sharma</td>
<td>Stomach ache</td>
<td>BU, BO</td>
<td></td>
</tr>
<tr>
<td>Lauraceae</td>
<td>Lawsonia inermis L</td>
<td>Internal disease</td>
<td>BE, LA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Persea americana Mill</td>
<td>Hypertension</td>
<td>TG, BE, LA, NA, KE, MA, LO, BU, BO</td>
<td></td>
</tr>
<tr>
<td>Liliaceae</td>
<td>Aloe vera L.</td>
<td>Diabetes mellitus, cough, hair care</td>
<td>TG, LA, NA, BU, BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coryline fraticosa (L.) A Chev</td>
<td>Injury</td>
<td>KE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eleutherine americana Merr.</td>
<td>Cancer</td>
<td>TG</td>
<td></td>
</tr>
<tr>
<td>Malvaceae</td>
<td>Abelmoschus manihot Pohl.</td>
<td>Diarrhea, appendix disorder, delivery</td>
<td>TG, BE, LA, NA, KE, MA, LO, BU, BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gossypium herbaceum L.</td>
<td>Cough</td>
<td>LA, KE, MA, BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hibiscus rosa-sinensis L.</td>
<td>Ulcer</td>
<td>BE, LA, KE, MA, BU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hibiscus sp.</td>
<td>Cancer</td>
<td>LO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sida rhombifolia L.</td>
<td>Tonsil, Rheumatism</td>
<td>TG, BU, BO</td>
<td></td>
</tr>
<tr>
<td>Menispermaceae</td>
<td>Tinospora crispa L.</td>
<td>Diabetes mellitus</td>
<td>BU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tinospora tuberculata Blume</td>
<td>Malaria fever, heart disease</td>
<td>LO, BU, BO</td>
<td></td>
</tr>
<tr>
<td>Mimosaceae</td>
<td>Leucaena glauca Benth</td>
<td>Scabies</td>
<td>BE, BU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mimos a pudica L.</td>
<td>Cough</td>
<td>BU</td>
<td></td>
</tr>
<tr>
<td>Moringaceae</td>
<td>Moringa oleifera Lam.</td>
<td>Diabetes mellitus</td>
<td>LA</td>
<td></td>
</tr>
<tr>
<td>Musaceae</td>
<td>Musa paradisiaca L.</td>
<td>Heart disease</td>
<td>BE, LA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Musa textilis Nee</td>
<td>Kidney disease</td>
<td>BE</td>
<td></td>
</tr>
<tr>
<td>Myrtaceae</td>
<td>Eugenia aqua Burm. f</td>
<td>Microba infection in mouth</td>
<td>TG, KE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Psidium guajava L.</td>
<td>Diarrhea, stomach ache</td>
<td>TG, BE, LA, NA, KE, MA, LO, BU, BO</td>
<td></td>
</tr>
<tr>
<td>Myristicaceae</td>
<td>Myristica fragrans Houtt</td>
<td>Liver, nuasea</td>
<td>BE, MA</td>
<td></td>
</tr>
<tr>
<td>Nyctagiaceae</td>
<td>Mirabilis jalapa L.</td>
<td>Poisoning, fever, pimples</td>
<td>LA, LO, BO</td>
<td></td>
</tr>
<tr>
<td>Oxalidaceae</td>
<td>Averrhoa bilimbi L.</td>
<td>Odema</td>
<td>TG, BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Averrhoa carombola L.</td>
<td>Injury</td>
<td>LO, BU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oxalis cornculata L.</td>
<td>Fever</td>
<td>TG</td>
<td></td>
</tr>
<tr>
<td>Oleaceae</td>
<td>Jasminum sambac L.</td>
<td>Eye infection, face tonic</td>
<td>TG, BE, LO</td>
<td></td>
</tr>
</tbody>
</table>

Notes: The table lists some common plant families and species, along with their uses and parts used. The column 'Part Used' indicates the specific part of the plant that is used for the listed uses. The 'Use' column describes the specific health condition or symptom that the plant is used to treat. The 'Family' column indicates the botanical classification of the plant.
Pandanaceae

Pandanus odoratissimus L.

- **Pondang**
 - Cholesterol-lowering, poisoning
 - TG, LA, BO
 - Herb

Poaceae

Andropogon nardus Roxb.

- **Watang**
 - Increasing blood circulation
 - MA, LO
 - Herb

Imperata cylindrica (L.) Raesusch

- **Hei**
 - Measles, kidney disease
 - LO, BO
 - Herb

Saccarum officinarum L.

- **Tuwu mahamu**
 - Diabetes mellitus
 - LA, KE, LO
 - Herb

Papilionaceae

Crotalaria striata DC

- **Kuhung-kuhung**
 - Cancer
 - BO
 - Herb

Derris elliptica Benth

- **Tuwa**
 - Poisoning, tumor
 - NA, LO, BU
 - Herb

Erythrina variegata L.

- **Bahu**
 - Asthma
 - KE, MA
 - Tree

Sesbania grandiflora (L.) Pers

- **Turi**
 - Sprue
 - BU
 - Shrub

Piperaceae

Piper betle L.

- **Deling**
 - Eye infection, fever, internal disease, baby caring
 - TG, BE, NA, KE, MA, BO
 - Herb

Piper canuinum L.

- **Deling asu**
 - Internal disease
 - MA
 - Herb

Piper nigrum L.

- **Rica Jawa**
 - Internal disease
 - BU, BO
 - Herb

Peperomia pellucida (L.) Kunth

- **Rumpa kakidumang**
 - Cholesterol
 - TG
 - Herb

Plantaginaceae

Plantago lanceolata L.

- **Mostor cina**
 - Kidney disease
 - TG, LO, BO
 - Herb

Portulacaceae

Talinum triangulare (J. wild)

- **Ginseng Putih**
 - Aphrodisiac
 - LO
 - Herb

Rubiaceae

Gardenia augusta Merr.

- **Pica piring**
 - Liver
 - LA, LO, BU
 - Shrub

Morinda citrifolia L.

- **Scha**
 - Hypertension, liver
 - TG, LA, KE, MA, LO
 - Tree

Massuaela pubescens Dryand

- **Lembawua**
 - Measles, sprue
 - TG, KE, LO
 - Shrub

Solanaceae

Capsicum annuum L.

- **Hisa**
 - Ulcer
 - NA
 - Herb

Physalis peruviana L.

- **Letah**
 - Kidney disease
 - LA
 - Herb

Solanum lycopersicum L.

- **Samate**
 - Ulcer
 - LO, BU
 - Herb

Solanum melongena L.

- **Pok-i-pok**
 - Dog bite
 - TG, BE, LA
 - Shrub

Solanum torvum SW

- **Pumpanikiang**
 - Headache
 - LO
 - Shrub

Sterculiaceae

Sterculia sp.

- **Betadin**
 - Injury
 - BU, BO
 - Shrub

Theobroma cacao L.

- **Coklat mahamu**
 - Diarrhea, ulcer
 - LO, BO
 - Tree

Verbenaeeae

Clerodendrum calamitosum L.

- **Gambir**
 - Kidney disease
 - TG
 - Tree

Clerodendrum sahelangii Koor Verb

- **Palata**
 - Fever
 - KE, MA
 - Shrub

Clerodendrum serratum Spreng

- **Sesewanua**
 - Fever
 - MA
 - Shrub

Lantana camara L.

- **Rumpat macam**
 - Injury
 - LO, BU
 - Shrub

Strachytarpheta jamaicensis (L.) Vahl.

- **Kali-kali meo**
 - Kidney disease
 - LO, BU
 - Herb

Zingiberaceae

Alpinia galanga (L.) Mild

- **Linkuasi**
 - Scabies
 - TG, BT, KE, LO
 - Herb

Curcuma longa L.

- **Kuni**
 - Liver, cough, body odor
 - TG, BE, LA, NA, KE, MA, LO, BU
 - Herb

Curcuma xanthorrhiza Roxb.

- **Timbulawa**
 - Liver
 - TG, LA, KE, MA, BO
 - Herb

Kaempferia galanga (L.) Milid

- **Kinsuli**
 - Fever, hypertension, beaty care
 - TG, LA, KE, MA, BO
 - Herb

Zingiber officinale Rosc.

- **Wuho**
 - Cough, headache
 - TG, BE, LA, NA, KE, MA, LO, BU
 - Herb

Zingiber purpureum Rosc.

- **Mangegele**
 - Headache
 - LA
 - Herb

Dischidia nythesiana

Dischidia nythesiana, locally called *lintakuhi* by the Sanger tribe, is an epiphytic plant belonging to Asclepiadaceae family (Figure 5.A). The drug from this plant is prepared by boiling the tender plants along with the leaves of *D. pentandra* which is a parasite on it, to get a water extract which is consumed orally. There are no scientific reports so far on the medicinal uses and chemical content of *D. nythesiana*. Utilization of *Dischidia imbricata* and *D. nummularia* as a cure for cancer is well known to sellers of herbal medicines in the traditional market of Kabanjahe, North Sumatra (Silalahi et al. 2015b). As there are no published reports on the phytochemicals of *D. nythesiana*, this plant needs to be subjected to phytochemical investigations and cytotoxic tests to validate its anticancerous claim.

Artemisia vulgaris

Artemisia vulgaris, locally known as *tututup* which means ‘closed leaves’ in local language, is a plant belonging to Asteraceae family (Figure 5.B). Its leaves are squeezed in water to get a liquid extract which is mixed with egg yolk and honey before consumption. Honey is added to reduce bitterness, while egg yolk helps to improve the efficacy of the drug. Patients in early-stage of cancer usually take this preparation once a day while those in advanced stages of cancer are suggested to consume it three times a day.
The people of Sanger tribe generally prone to smoking habit, which could be the major risk factor for oral cancer. Arundina et al. (2015) reported the potential of A. vulgaris as an anti-gastrointestinal cancer drug, especially against oral and breast cancers. Sucipto et al. (2014) listed the main essential oils of A. vulgaris, such as 3,5-dimethyl-4-ethyldiene-cyclohex-2-ena-1-one, filifolone, germacren-D, gamma-caryophyllene, eukarvone and 1,8-cineol, each with a level greater than 3%. The anticancer property of A. vulgaris is suspected to be associated with its essential oil content. The action of essential oils as anti-cancer agents has been reported by Zarlah et al. (2014), who extracted the oil of Ocimum basilicum and tested its anti-cancer activity in different human cell cancer cells, namely HeLa cells, adenocarcinoma cells, cervical cancer cells, FemX human melanoma cells, K562 chronic myelogenous leukemia cells and SKOV3 human ovarian cells, through in vitro experiments.

Crotalaria striata

Crotalaria striata or kuhung-kuhung in local language is a member of Fabaceae family (Figure 5.C). Sanger people consume it as a water extract obtained by boiling the whole plants. Nurrani et al. (2016) reported the potential of ethanol extract of C. striata leaves as an anti-cervical cancer drug. Moreover, the ethyl acetate fraction of Crotalaria sp. extract was found to inhibit MCF-7 breast cancer cells with the lowest IC50 value of 29.67 μg/mL, followed by the n-hexane and ethyl acetate fractions of the seed extract and the ethanol fraction of the leaf extract with IC50 values of 32.1, 44.2 and 56.7 μg / mL, respectively. The hexane and ethyl acetate fractions of the leaf and seed extracts had IC50 value of 107.14 and 170.83 μg / mL, respectively, and they are effective against the MCF-7 breast cancer cells. However, the ethanol extract of the seeds and leaves did not show inhibition of proliferation of MCF-7 breast cancer cells (Rumondor et al. 2016).

Eleutherine americana

Eleutherine americana is called bawang babi in Sanger dialect and bawang Dayak in Bahasa, Indonesia (Figure 5.D) due to its medicinal use among the Dayak ethnic group (Kantorini and Nugroho 2010). Moreover, E. americana is also in use as a spice for cooking purposes among the local communities of Asia, including the Dayak tribe. It may be assumed that utilization of E. americana by the Sanger tribe to cure cancer was adopted from the local wisdom of the Dayak tribe who use it as a breast cancer drug. This phenomenon shows the acculturation of local wisdom from different tribes (Sujarwo and Caneva 2016). To use it as a medicine, the plant is prepared by boiling the tuberous bulbs and the water extract obtained is filtered prior to consumption.

Eleutherine americana has been widely reported as an anti-cancer drug especially for breast cancer (Kantorini and Nugroho 2010; Saraghi et al. 2014; Amelia et al. 2015). Several studies have reported that the bulb of E. americana contain phytochemicals such as naphthalene, anthraquinone and naphthoquinone (Insanu et al. 2014); elecanacine, eleutherine, eleutherol, and eleuthernone (Hara et al. 1997); eleutherol, eleutherinoside A and B, and the potentially medicinal eleuthoside (Ieyama et al. 2011); and 6,8-dihydroxy-3,4-dimethoxy-1-methyl-anthraquinone-one-2-carboxylic acid methyl ester (Xu et al. 2006). Eleutherine, eleutherineone, eleutherol, isoeleutherine, eleutherolin, dihydroeleutherolin, hongconin and 6,8-dihydroxy-3,4-dimethoxy-1-methyl-anthraquinone-2-carboxylic acid methyl esters have been shown to inhibit the growth of HeLa cells (Amelia et al. 2015). The compound 6,8-dihydroxy-3,4-dimethoxy-1-methyl-anthraquinone-one-2-
carboxylic acid methyl ester was also reported to have the ability to inhibit erythroleukemia cell line K562 with IC50 value of 49.1 μg/mL (Xu et al. 2006).

Diversity of medicinal plants across study villages

The Sanger tribe utilizes as many as 118 species of medicinal plants. The number of medicinal plants utilized by the Sanger tribe in different villages selected for the study varied from the lowest of 27 species, which was recorded from Mala Village, to the highest of 54 species recorded from Lumbo Village (Figure 6). This variation is influenced mainly by the diversity of plants found in the surrounding environment, the topography of the village area and its distance to the forests. A total of 7 species were found to be commonly used as medicinal in all nine research sites. They are J. curcas, Abelmoschus manihot, Psidium guajava, Allium schoenoprasum, Persea americana, C. domestica, and Z. officinale. These plants are usually cultivated and commonly found in various regions of Indonesia. In addition to medicinal purposes, some of them are also used for other purposes, such as edible fruits (P. guajava, P. americana), kitchen spices (Z. officinale, A. schoenoprasum), and as hedgerow plant (J. curcas).

![Figure 5](image1.png)
Figure 5. Traditional anti-cancer medicinal plants used by the Sanger tribe in the Sangihe Islands: A. Dischidia nythesiana, B. Crotalaria striata, C. Artemisia vulgaris, and D. Eleutherine americana.

![Figure 6](image2.png)
Figure 6. The number of medicinal plant species utilized by the Sanger tribe in different study villages. BE: Batulewehe, BO: Bawo, BU: Bawoleu, KE: Kalakube, LA: Lesa, LO: Lumbo, MA: Mala, NA: Naha, TG: Tapuang

<table>
<thead>
<tr>
<th></th>
<th>TG</th>
<th>BU</th>
<th>BE</th>
<th>BO</th>
<th>LA</th>
<th>LO</th>
<th>NA</th>
<th>KE</th>
<th>MA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG</td>
<td>-</td>
<td>0.260</td>
<td>0.317</td>
<td>0.400</td>
<td>0.371</td>
<td>0.250</td>
<td>0.286</td>
<td>0.350</td>
<td>0.242</td>
</tr>
<tr>
<td>BU</td>
<td>0.26</td>
<td>-</td>
<td>0.394</td>
<td>0.342</td>
<td>0.236</td>
<td>0.500</td>
<td>0.262</td>
<td>0.242</td>
<td>0.189</td>
</tr>
<tr>
<td>BE</td>
<td>0.317</td>
<td>0.394</td>
<td>-</td>
<td>0.254</td>
<td>0.333</td>
<td>0.258</td>
<td>0.200</td>
<td>0.224</td>
<td>0.273</td>
</tr>
<tr>
<td>BO</td>
<td>0.400</td>
<td>0.342</td>
<td>0.254</td>
<td>-</td>
<td>0.333</td>
<td>0.333</td>
<td>0.370</td>
<td>0.246</td>
<td>0.262</td>
</tr>
<tr>
<td>LA</td>
<td>0.371</td>
<td>0.236</td>
<td>0.333</td>
<td>0.333</td>
<td>-</td>
<td>0.263</td>
<td>0.296</td>
<td>0.327</td>
<td>0.308</td>
</tr>
<tr>
<td>LO</td>
<td>0.250</td>
<td>0.500</td>
<td>0.258</td>
<td>0.333</td>
<td>0.263</td>
<td>-</td>
<td>0.250</td>
<td>0.219</td>
<td>0.227</td>
</tr>
<tr>
<td>NA</td>
<td>0.286</td>
<td>0.262</td>
<td>0.200</td>
<td>0.270</td>
<td>0.296</td>
<td>0.250</td>
<td>-</td>
<td>0.292</td>
<td>0.289</td>
</tr>
<tr>
<td>KE</td>
<td>0.35</td>
<td>0.242</td>
<td>0.224</td>
<td>0.246</td>
<td>0.327</td>
<td>0.219</td>
<td>0.292</td>
<td>-</td>
<td>0.415</td>
</tr>
<tr>
<td>MA</td>
<td>0.242</td>
<td>0.189</td>
<td>0.273</td>
<td>0.262</td>
<td>0.308</td>
<td>0.227</td>
<td>0.289</td>
<td>0.415</td>
<td>-</td>
</tr>
</tbody>
</table>

The medicinal plants used by the Sanger tribe are different across studied villages and some species are specifically used only in certain villages. For example, *Peperomia pellucida* was used only in Tapuang Village, *Talinum triangulare* only in Lumbo Village, *Alstonia scholaris* in Bawo, *Homalomena occulta* in Bawoleu, *D. nytheisiana* in Lumbo and Bawo, and *Spilates ocympifolia* in Lumbo. The calculated Jaccard similarity indices were between 0.189 and 0.500 (Table 2). This shows that the medicinal plants used by each village were relatively different from those of other villages. The lowest similarity index of 0.189 existed between Mala (MA) and Bawoleu (BU) villages, whereas the highest similarity index of 0.500 existed between Bawoleu (BU) and Lumbo (LO) villages. Silalahi and Nisyawati (2018) found that in the Karo ethnic group, adjacent villages had higher Jaccard equality indexes than those located away from each other. Communities in neighboring villages have a wider opportunity to exchange information on the use of medicinal plants compared to more distant villages.

The Lumbo village did not have any health service facility, so the villagers used mainly traditional medicine for maintaining their health. Therefore, many medicinal plants were found in cultivation in this village. Moreover, the Lumbo village is relatively close to the forest, compared to other villages. Mala village was found to be using the lowest number of medicinal plants (27 species), as this village is near to urban areas and it has proper health care facilities. Furthermore, the knowledge of medicinal plants among the villagers in Mala was found to be lower compared to that of the Lumbo village and they cultivated less than number of medicinal plants.

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to sister Endang Mulalinda and family who helped to retrieve the data and confirm the previous data. They also thank the Indonesian Government for research grant through the Higher Education Research Grant in 2015 and through UNSRAT PNB P in 2017.

REFERENCES

Mulalinda E, Pandiangan D, Dapas F. 2006. Inventarisasi tumbuhan obat tradisional di Kecamatan Mulak Ulu Kecamatan Mulak Ulu Kabupaten Bolaang Mongondow. [Indonesian]

Pandianand D, Kandou FE. 2006. Inventarisasi dan penapisan alkaloid tumbuhan obat tradisional Suku Sanger di Sangihe. Seminar Nasional Farmasi, Universitas Padjadjaran, Bandung. [Indonesian]

