Anti-inflammatory activities of ethnomedicinal plants from Dayak Abai in North Kalimantan, Indonesia

SWANDARI PARAMITA1,*, KHEMA SILI KOSALA1, DZULKIFLI DZULKIFLI2, DEBY INDAH SAPUTRI1, ENGGAR WIJAYANTI3

1Faculty of Medicine, Universitas Mulawarman. Jl. Keraya Kampus Gunung Kelua, Samarinda 75119, East Kalimantan, Indonesia. Tel./Fax. +62-541-748581. *email: swandari@mulawarman.ac.id
2Faculty of Forestry, Universitas Mulawarman. Jl. Ki Hajar Dewantara Kampus Gunung Kelua, Samarinda 75119, East Kalimantan, Indonesia
3Center for Research and Development of Medicinal Plants and Traditional Medicine. Jl. Raya Lawu No.11 Tawangmangu, Karanganyar 57792, Central Java, Indonesia

Abstract. Paramita S, Kosala K, Dzulkifli D, Sapatri DI, Wijayanti E. 2017. Anti-inflammatory activities of ethnomedicinal plants from Dayak Abai in North Kalimantan, Indonesia. Biodiversitas 18: 1556-1561. Inflammation is a normal process in the human body as a response to injury from the healing process. Meanwhile, chronic inflammation will cause new health problems to patients. Anti-inflammatory drugs generally used for those conditions, have several side effects to patients. The objective of this research was to find alternative anti-inflammatory drugs, especially from natural sources. Three medicinal plants recorded from Dayak Abai in North Kalimantan, Indonesia for health problems caused by the inflammation process i.e. Amomum xanthophrcelebium Baker, Clerodendrum buchananii (Roxb.) Walp., and Donax canniformis (G.Forst.) K.Schum. were used as material in this research. The experimental method using carrageenan-induced rat paw edema was followed by the resulting measurement using plethysmometer. The results showed that significant differences of AUC (area under the curve) with p = 0.001 (p < 0.05) were achieved between negative control, positive control, and treatment group with plant medicinal extracts. AUC of leaves ethanol extract of C. buchananii showed the strongest anti-inflammatory activities. It could be concluded that the medicinal plants recorded from ethnomedicinal data from Dayak Abai in North Kalimantan, have anti-inflammatory activities, with C. buchananii as the most potential ones which could be further developed as a new source of the anti-inflammatory drug.

Keywords: Anti-inflammatory, Amomum xanthophrcelebium, Clerodendrum buchananii, Donax canniformis, carrageenan-induced rat paw edema

INTRODUCTION

Inflammation is a physiological process in the body in response to a lesion on the body. Acute inflammation can be triggered by various stimuli which could be seen from the rapid response at the site of infected or damaged tissues such as leukocytes carriers and protein plasma (antibodies) to the site of inflammation. Chronic inflammation can occur due to the subsequent process of acute inflammatory processes from several weeks to months and even years. During the course of acute and chronic inflammation, a number of chemical mediators will be released. A large number of inflammatory mediators are released via arachidonic acid pathways, including prostaglandins, as a result of the breakdown of arachidonic acid by cyclooxygenase enzymes. Although inflammation is a physiological process in the body, it can cause severe impacts for patients, including the emergence of pain, swelling, fever and other symptoms (Souza et al. 2012).

To overcome these effects, most types of anti-inflammatory drugs are applied. There are two classes of anti-inflammatory drugs i.e. NSAIDs (non-steroidal anti-inflammatory drugs) and corticosteroids. NSAIDs work by inhibiting cyclooxygenase enzyme action. While corticosteroids will inhibit the expression of cyclooxygenase enzyme. The inhibition of inflammation process may help patients by: (i) Reducing inflammation process, especially for patients with the muscle injury and other conditions with swelling of the joints. (ii) Reducing pain, especially for patients with osteoarthritis, rheumatism, gout, surgery effects (Pountos et al. 2011). (iii) Reducing fever, mainly due to inhibition of prostaglandin production in the hypothalamus as the main role in the process of fever. (iv) Protecting the heart by inhibiting the production of thromboxane A2 enzymes in the clot formation process, which potentially cause blockages in coronary artery heart (Goodman et al. 2010).

In spite of many advantages, the use of anti-inflammatory drugs also has indisputable side effects. Some prominent side effects of anti-inflammatory drugs are the effects on the gastrointestinal system. This is mainly because the inhibition of cyclooxygenase enzymes, especially COX-1, will trigger the inhibition of prostacyclin and PGE2. In the stomach, prostacyclin and PGE2 are known as the protector of gastric wall mucosa from the effects of stomach acid. As a result, the side effects of those drugs appear such as nausea, severe vomit, and the hardest effects i.e. peptic ulcer with bleeding complications as the major cause of death. The use of high or long-term doses of NSAIDs, along with corticosteroids.
and/or anticoagulants, smoking and/or alcohol, increases the risk of these side effects. In addition, some studies have reported that some NSAIDs also have direct destructive effects on gastric mucosal cells, causing these side effects (Siew and Francis 2010). Another side effect is on the cardiovascular system. Prostaglandins produced by the cyclooxygenase process regulate the complex interactions between platelets and blood vessel walls. In the administration of selective anti-inflammatory drugs COX-2, the imbalance production of prostacyclin and TXA2 occurs, leading to an imbalance of a prothrombotic in the blood, which further increases the risk of thrombotic blood events (Antman et al. 2007). Of these reasons, incessant efforts to find alternative anti-inflammatory drugs, especially those derived from natural materials are very important.

Indonesia is known as one of the mega-biodiversity countries with the abundance of medicinal plants. Each ethnic communities has a diverse culture and a local wisdom, including the use of plants for traditional medicine. Knowledge of the use of medicinal plants by indigenous communities is essential for the development of traditional medicine and the development of modern medicine. This is because most plant extracts used in modern medicine are found through local knowledge approach. The use of medicinal plant data from ethnobotany research is an effective way to discover new potential chemicals for treatment. Research on Local Knowledge Exploration of Ethnomedicine and Community-Based Drugs in Indonesia is also known as the Research of Medicinal and Herbs (Riset Tumbuhan Obat dan Jamu or RISTOJA) (MoH RI 2016).

The RISTOJA program of the Indonesian Ministry of Health undertaken in North Kalimantan in 2015 produced a number of identified-medicinal plant information up to the species level. This program also successfully recorded the indications/complaints of the disease, including the health problems caused by the inflammatory process. Around 25 medicinal plants with ethnomedicinal data showing anti-inflammatory effects had been recorded. Based on published papers, the comprehensive study of the anti-inflammatory activity of three medicinal plants i.e. Clerodendrum buchananii (Roxb.) Walp., Donax cannifornis (G.Forst.) K. Schum., and Amomum xanthophlebium Baker is still limited (Ismail et al. 2012; Ismail et al. 2015; RIMU 2015). These were supported by ethnomedicinal data from Dayak Abai ethnic group in North Kalimantan. Therefore, the objective of this study was to test the anti-inflammatory activity of the three medicinal plants i.e. Clerodendrum buchananii (Roxb.) Walp., Donax cannifornis (G.Forst.) K. Schum., and Amomum xanthophlebium Baker originated from Dayak Abai ethnic group in North Kalimantan.

MATERIALS AND METHODS

Sampling and sample identification

The sampling of medicinal plants was conducted at the location of RISTOJA 2015 research, i.e. Dayak Abai settlement in Sentaban Village, Malinau Barat Sub-district, Malinau District, North Kalimantan (MoH RI 2016). The plant sampling was located at about 900 km from Samarinda, the capital of East Kalimantan province. Plants were then be identified in the Laboratory of Ecology and Dendrology of the Faculty of Forestry, Mulawarman University, Samarinda, East Kalimantan, Indonesia to certify the plant legality. Based on the plant identification, the medicinal plants used in this study were Amomum xanthophlebium Baker., Clerodendrum buchananii (Roxb.) Walp., and Donax cannifornis (G.Forst.) K. Schum. While, experimental research was conducted in This study was conducted in the Research Laboratory of the Faculty of Medicine, Mulawarman University, Samarinda, East Kalimantan, Indonesia.

Medicinal plant extractions

The extraction of medicinal plant followed the guidelines from the Indonesian Herbal Pharmacopoeia (MoH RI 2008). Medicinal plants were dried and then crushed into simplicia. The simplicia were then macerated using absolute ethanol solvent in a ratio of 1 part of simplicia to 10 parts of solvent. The mixture was soaked for 6 hours followed by stirring occasionally with an orbital shaker at room temperature in each interval hours, which were then stood for 18 hours. The mixture was then separated using filter paper, then evaporated with a rotary evaporator at 50°C. The obtained viscous extract was dried to obtain a dry extract. The dried extracts were then stored in a refrigerator of -20°C for further study.

Anti-inflammatory test activity

Anti-inflammatory activity of medicinal plant extracts was tested by carrageenan-induced rat paw edema method and measured using a plethysmometer. There were 5 groups of experimental animals in this study: (i) Group 1 was negative control; (ii) Group 2 was a positive control by giving indomethacin dose 10 mg/kg orally; (iii) Groups 3, 4 and 5 were treated with medicinal plant extracts in different doses. Each group consisted of 5 individuals.

The dosage of medicinal plants was determined using calculation table conversion for various species of animal species (Bacharach and Laurence 1964). Doses for C. buchananii was as follows: dosage I 0.91 mg/kg, dose II 1.81 mg/kg, and dosage III 3.63 mg/kg. Doses for D. cannifornis was as follows: dosage I 0.54 mg/kg, dosage II 1.08 mg/kg, and dosage III: 2.16 mg/kg. Doses for A. xanthophlebium was as follows: dosage I 0.25 mg/kg, dosage II 0.5 mg/kg, and dosage III 1 mg/kg.

Carrageenan (0.1 ml of 1% in 0.9% NaCl) was injected in subcutaneous in left paw substrate of rat and waited the work reaction for an hour. After the injection, the volume of rat paw edema was measured with the plethysmometer. The measurement was further done at the 1st, 2nd, 3rd, 4th, 5th, and 6th hours after the injection. Paw edema is defined as the changes of the rat paw edema after the carrageenan injection on the left paw sub-plant measured by plethysmometer in a certain time range. Percentage of edema inhibition changes were calculated using the formula as follows: \((V1-V0) \times 100\%\), where \(V1\) is the left
paw volume of the treated rats within a certain time range, V0 is the left paw volume of the rat before carrageenan injection (Eddouks et al. 2012).

Data analysis
The obtained data were calculated for each mean and SE (standard error) for the results of paw edema test. Obtained data was then statistically analyzed by ANOVA followed by Tukey post hoc, with the level of confidence at 95% (p < 0.05) using PSPPIRE 0.8.4. software. To compare anti-inflammatory activity among the three medicinal plants, the AUC (under curve area) was calculated from all the obtained results. All data were presented in tables and graphs.

RESULTS AND DISCUSSION

Anti-inflammatory activity of each medicinal plant
The results of the oral administration of the medicinal plants extract for the inhibition of rat paw edema induced by carrageenan are shown in Table 1. The effectivity of those medicinal plant extracts relative to the negative control and indomethacin used as positive control was also observed. It can be observed that the plant medicinal extract showed a significant antiedematogenic activity, within the first hour after the extracts administration; with ANOVA results indicated statistically significant differences between treatment (p < 0.001). The Tukey post hoc test showed a decrease in paw edema volume in the first hour after carrageenan injection, compared to the control group. The administration of C. buchananii extract with the dosage I produced a significant reduction in the paw edema after 1 h of extract application (p < 0.05). The same results were also shown in the application of D. canniformis extract with the dosage III (p < 0.001), and A. xanthophlebium extract with the dosage III (p < 0.001), which reduced the paw edema compared to the controls after 1 h of those extract administration. As expected, the reference drug, indomethacin (10 mg/kg), caused a significant inhibition of post-carrageenan edema.

Comparison of anti-inflammatory activity of three medicinal plants
Comparison of anti-inflammatory activity among three medicinal plants was observed based on the calculation of AUC values (area under the curve) from all research results. Table 2 shows the results of paw edema AUC with the administration of C. buchananii, D. canniformis, and A. xanthophlebium. There were significant differences of AUC results amongst three medicinal plants and controls with p < 0.01. The lower AUC score indicated that the prevalence of paw edema was less. The Tukey post hoc test showed significant differences in AUC score (p < 0.05) for C. buchananii dosage I, D. canniformis dosage III, and A. xanthophlebium dosage III when compared to the controls. Since the edema indicates an inflammatory process, when the prevalence of edema was less after it was administered by the extract of plant medicinal, it means that the activity of anti-inflammatory of the medicinal plant extract was very strong. The lowest AUC results of the three medicinal plants could be seen in the first dose of C. buchananii extract.

Table 1. Average of carrageenan-induced paw edema inhibition after the administration of plant extracts

<table>
<thead>
<tr>
<th>Plants</th>
<th>Group</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB</td>
<td>Control</td>
<td>41.7 ± 3.8</td>
<td>36.6 ± 3.7</td>
<td>34.1 ± 4.4</td>
<td>31.8 ± 4.0</td>
<td>30.6 ± 4.1</td>
<td>29.0 ± 4.2</td>
<td>24.8 ± 3.8</td>
</tr>
<tr>
<td></td>
<td>Indomethacin</td>
<td>76.9 ± 3.3*</td>
<td>71.0 ± 3.1*</td>
<td>68.4 ± 3.8*</td>
<td>62.8 ± 2.9*</td>
<td>60.3 ± 2.5*</td>
<td>54.4 ± 3.1*</td>
<td>47.3 ± 2.1*</td>
</tr>
<tr>
<td></td>
<td>Dosage I</td>
<td>79.3 ± 8.3*</td>
<td>74.2 ± 2.3*</td>
<td>67.8 ± 2.5</td>
<td>61.7 ± 1.9</td>
<td>58.8 ± 1.5</td>
<td>54.0 ± 2.2</td>
<td>46.7 ± 1.8</td>
</tr>
<tr>
<td></td>
<td>Dosage II</td>
<td>66.6 ± 3.6</td>
<td>55.4 ± 4.9</td>
<td>50.3 ± 3.4</td>
<td>44.9 ± 2.9</td>
<td>40.5 ± 3.2</td>
<td>36.6 ± 2.8</td>
<td>29.7 ± 2.2</td>
</tr>
<tr>
<td></td>
<td>Dosage III</td>
<td>72.4 ± 10.3</td>
<td>48.5 ± 10.3</td>
<td>45.7 ± 7.9</td>
<td>43.2 ± 4.9</td>
<td>41.2 ± 5.0</td>
<td>38.8 ± 4.9</td>
<td>37.3 ± 3.9</td>
</tr>
<tr>
<td>DC</td>
<td>Control</td>
<td>41.7 ± 3.8</td>
<td>36.6 ± 3.7</td>
<td>34.1 ± 4.4</td>
<td>31.8 ± 4.0</td>
<td>30.6 ± 4.1</td>
<td>29.0 ± 4.2</td>
<td>24.8 ± 3.8</td>
</tr>
<tr>
<td></td>
<td>Indomethacin</td>
<td>76.9 ± 3.3***</td>
<td>71.0 ± 3.1***</td>
<td>68.4 ± 3.8***</td>
<td>62.8 ± 2.9*</td>
<td>60.3 ± 2.5*</td>
<td>54.4 ± 3.1*</td>
<td>47.3 ± 2.1*</td>
</tr>
<tr>
<td></td>
<td>Dosage I</td>
<td>78.6 ± 8.3*</td>
<td>74.2 ± 2.3</td>
<td>41.2 ± 2.3</td>
<td>38.0 ± 1.9</td>
<td>34.6 ± 1.5</td>
<td>30.9 ± 2.2</td>
<td>27.8 ± 1.8</td>
</tr>
<tr>
<td></td>
<td>Dosage II</td>
<td>74.2 ± 8.0*</td>
<td>57.1 ± 10.9</td>
<td>44.9 ± 7.6</td>
<td>39.6 ± 6.4</td>
<td>37.6 ± 7.0</td>
<td>34.4 ± 6.3</td>
<td>30.1 ± 4.8</td>
</tr>
<tr>
<td></td>
<td>Dosage III</td>
<td>74.2 ± 9.1***</td>
<td>69.2 ± 10.2***</td>
<td>56.2 ± 7.6</td>
<td>47.0 ± 4.7</td>
<td>44.5 ± 5.1</td>
<td>41.7 ± 4.4</td>
<td>32.4 ± 3.5</td>
</tr>
<tr>
<td>AX</td>
<td>Control</td>
<td>41.7 ± 3.8</td>
<td>36.6 ± 3.7</td>
<td>34.1 ± 4.4</td>
<td>31.8 ± 4.0</td>
<td>30.6 ± 4.1</td>
<td>29.0 ± 4.2</td>
<td>24.8 ± 3.8</td>
</tr>
<tr>
<td></td>
<td>Indomethacin</td>
<td>76.9 ± 3.3*</td>
<td>71.0 ± 3.1*</td>
<td>68.4 ± 3.8*</td>
<td>62.8 ± 2.9*</td>
<td>60.3 ± 2.5*</td>
<td>54.4 ± 3.1*</td>
<td>47.3 ± 2.1*</td>
</tr>
<tr>
<td></td>
<td>Dosage I</td>
<td>85.2 ± 4.2*</td>
<td>72.1 ± 5.0*</td>
<td>61.1 ± 3.5*</td>
<td>56.8 ± 3.5</td>
<td>51.7 ± 3.8</td>
<td>44.4 ± 3.0</td>
<td>37.2 ± 3.0</td>
</tr>
<tr>
<td></td>
<td>Dosage II</td>
<td>77.1 ± 8.2*</td>
<td>67.6 ± 7.9*</td>
<td>61.8 ± 7.3</td>
<td>58.2 ± 6.9*</td>
<td>53.5 ± 6.0</td>
<td>47.7 ± 5.2</td>
<td>37.8 ± 4.8</td>
</tr>
<tr>
<td></td>
<td>Dosage III</td>
<td>84.3 ± 3.8*</td>
<td>66.0 ± 5.6*</td>
<td>59.3 ± 4.3</td>
<td>53.9 ± 4.8</td>
<td>49.9 ± 6.4</td>
<td>45.3 ± 4.9</td>
<td>37.4 ± 5.1</td>
</tr>
</tbody>
</table>

Note: ANOVA (CB: C. buchananii p<0.001; DC: D. canniformis p<0.001; AX: A. xanthophlebium p<0.001), followed by Tukey post hoc test, with "$p<0.05,$ "$p<0.01,$ "$p<0.001 compared to control
Table 2. The average AUC of carrageenan-induced paw edema inhibition after the administration of plant extracts

<table>
<thead>
<tr>
<th>Group</th>
<th>AUC ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>406.69 ± 23.50</td>
</tr>
<tr>
<td>Indomethacin</td>
<td>224.57 ± 14.63</td>
</tr>
<tr>
<td>C. buchananii dosage I</td>
<td>233.16 ± 20.50</td>
</tr>
<tr>
<td>C. buchananii dosage II</td>
<td>327.67 ± 25.85</td>
</tr>
<tr>
<td>C. buchananii dosage III</td>
<td>328.47 ± 66.46</td>
</tr>
<tr>
<td>D. canniformis dosage I</td>
<td>356.22 ± 9.61</td>
</tr>
<tr>
<td>D. canniformis dosage II</td>
<td>336.42 ± 14.66</td>
</tr>
<tr>
<td>D. canniformis dosage III</td>
<td>292.77 ± 30.66</td>
</tr>
<tr>
<td>A. xanthophlebium dosage I</td>
<td>256.20 ± 18.77</td>
</tr>
<tr>
<td>A. xanthophlebium dosage II</td>
<td>258.41 ± 38.69</td>
</tr>
<tr>
<td>A. xanthophlebium dosage III</td>
<td>268.69 ± 26.62</td>
</tr>
</tbody>
</table>

Note: ANOVA (p<0.01), followed by Tukey post hoc test, with *p<0.05 compared to control

Discussion

Our findings firstly highlight the potency of ethnomedicinal plants from Dayak Abai for anti-inflammatory properties, providing a scientific basis for the alternative uses of ethnomedicinal plants from Dayak Abai in the treatment of inflammatory disorders. The results of this study indicate that all three medicinal plants i.e. C. buchananii, D. canniformis, and A. xanthophlebium had anti-inflammatory effects, with C. buchananii leaf extract showed the strongest anti-inflammatory activity of all two other medicinal plants, based on carrageenan-induced paw edema test results.

Specifically, C. buchananii used in this study belongs to the Lamiaceae family. Dayak Abai ethnic group in Malinau District, North Kalimantan named it as “tenger asam”. The leaves are mostly used as traditional medicine. C. buchananii is also used in some other places as a medicinal plant. As an example, C. buchananii in Serampas, Jambi, known also as “bungo panggil”, was used for expelling the certain disease due to the superstitious practices (Hariyadi and Ticktin 2012). C. buchananii in Pekurehua, Central Sulawesi which is locally called as “lelimbanua”, was used as a medication for shortness of breath, swelling or rheumatism (Susirii et al. 2009). C. buchananii in Tobelo, North Maluku, also locally known as “tatakabo”, was used to treat sick people by boiling the leaves which were then drunk or rubbing the leaves applied to the body (Susirii et al. 2015). C. buchananii in Kaulong, Papua New Guinea is called “cocoyat”, its leaves are used to treat fungus infections and skin lesions (Prescott et al. 2012). C. buchananii in Rotiana, Solomon Islands called “titimunuhaha”, is also used as a traditional medicine there (Furosawa et al. 2014). Based on this many local information regarding with the use of C. buchananii in traditional medicine practices, we are interested to study this medicinal plant and; fortunately, we successfully confirmed that this medicinal plants had a high potency as anti-inflammatory medicines.

Several other species of Clerodendrum including Clerodendrum infortunatum L.; Clerodendrum paniculatum L.; Clerodendrum phlomidis L.f.; and Clerodendrum volubile P.Beauv have been studied their anti-inflammatory activities. C. infortunatum, for example, is used as a traditional medicine in India, Bangladesh, Pakistan and surrounding areas. C. infortunatum leaves were used as bronchitis and asthma drug in Bangladesh (Apu et al. 2012). One published study found the anti-inflammatory activity *in vitro* on ethanol extract of C. infortunatum leaf using the writhing test (peripheral analgesic effect) and the tail flick method (central analgesia effect) (Kale and Maniyar 2015; Chandrashekar and Rao 2013). Another study also reported that ethanol extract of C. infortunatum root using writhing method possessed a valuable anti-inflammatory activity (Sumi et al. 2015). The same founding of anti-inflammatory activity also reported on ethanol extract of C. infortunatum leaf using carrageenan-induced rat paw edema (Chandrashekar and Rao 2014). Interestingly, other natural compounds such as saponins were successfully isolated from C. infortunatum leaf showing analgesic activity with writhing test and hot plate test (Das et al. 2014).

Clerodendrum species which are also frequently studied their anti-inflammatory activity is C. phlomidis. This plant is also used as a traditional medicine in India, Bangladesh, Pakistan and surrounding areas, especially for joint pain medication. One study found that C. phlomidis leaf extract had anti-inflammatory and anti-arthritic activity using carrageenan-induced paw edema and arthritis induced with FCA (Freund complete adjuvant) in trial rats (Prakash et al. 2014). Other studies also reported the same founding in the root extract of C. phlomidis using granuloma cotton pellet method (Parekar et al. 2012). Interestingly, other published papers also found that C. phlomidis extracts had analgesic, antiasthma, and antiarthritic effects (Raja and Mishra 2010). Other Clerodendrum species, i.e. C. volubile have been also studied its anti-inflammatory activity which is mostly used as a traditional medicine in Senegal and surrounding areas, especially for joint pain medication. The presence of anti-inflammatory activity of C. volubile leaf extract was successfully found using rat paw edema induction method with fresh albumin (Adediwura and Yewande 2012). From all studies of anti-inflammatory activity of Clerodendrum species; however, the published research of Clerodendrum species in Indonesia associated with that activity was still limited. A study of C. paniculatum in North Sumatra found that anti-inflammatory activity could be obtained using granuloma cotton pellet method and the induction of rat paw edema with carrageenan (Hafiz et al. 2016). Therefore, we used the local Clerodendrum species originated from Dayak Abai ethnic group in Malinau District, North Kalimantan as our focus study and successfully confirm their potency as anti-inflammatory medicine which could be further developed.

We also used carrageenan-induced paw edema model in this study because it is a frequently used as the method for testing non-steroidal anti-inflammatory agents. Carrageenan is a linear sulfate polysaccharide derived from an edible seaweed species. Carrageenan is commonly used...
in food and pharmaceutical industries because of its ability to form gels, as hardener and preservative. Carrageenan is widely used as a phlogistic agent to induce acute inflammation, and it is a classic model applied in research on NSAIDs. Besides being non-antigenic and having no systemic effect, carrageenan is known to produce a pro-inflammatory response. Edema caused by carrageenan injection is characterized by swelling of localized areas with fluid and leukocytes, resulting in swelling of the legs (Tasleem et al. 2014; Archera et al. 2015).

The formation of carrageenan-induced edema in rat paws is a biphasic event over a period of 1 to 5 hours. The initial phase (1 to 1.5 hours) is dominated by non-phagocytic edema, followed by a second phase with increased edema formation which occurred in the rest five hour. There are differences of mediators in various phases in carrageenan-induced edema. The initial phase (up to the first 1.5 hours) is characterized by the release of histamine, 5-hydroxytryptamine, PAF (platelet activating factor) and serotonin. Kinin is released from 1.5 to 2.5 hours in the last phase, the inflammation will continue until the fifth hour by lipid-derived eicosanoid (prostaglandin, leukotriene 5-

hydroperoxyeicosatetraenoic acid, and others) (Ray et al. 2015; Cheng et al. 2016).

In carrageenan-induced paw edema, the following events occur (i) Induction of COX-2 and mPGES-1 during the ongoing production of PGE2 on swollen paws. (ii) Carrageenan-induced paw edema causes COX-2 upregulation and general improvement of prostanooids in the central nervous system during the early phases of inflammation. (iii) Peripheral inflammation causes a significant increase in PGE2 and selective induction of mPGES-1 in the central nervous system. (iv) Prostacyclin levels increase in the central nervous system during the early phase of carrageenan-induced paw edema without significant PGIS upregulation (Zhang et al. 2013; Erasalo et al. 2015). The action mechanism of medicinal plant extracts as the anti-inflammatory agent is predicted due to the flavonoid content of those plant extracts. Therefore, the three medicinal plants used in our study, might contain high flavonoid contents especially in *C. buchananii* leaf extract, which show the strongest anti-inflammatory activities. Although, the further secondary metabolite analysis may need to be intensively observed to confirm this flavonoid concentration. An important mechanism of anti-inflammatory activity is the inhibition of enzymes that produce eicosanoid, including A2 phospholipase, cyclooxygenase, and lipoxygenase, leading to the decrease concentration of prostanoid and leukotrienes. Other mechanisms include inhibition of histamine release, phosphodiesterase, protein kinase and transcriptase activation (Rathee et al. 2009).

In summary, our findings are the first scientific report to show the potency of ethnomedicinal plants from Dayak Abai as anti-inflammatory medicine using the carrageenan-induced paw edema model. Our study finds that there were significant differences in anti-inflammatory activity of amongst treated medicinal plants (*C. buchananii*, *D. canniformis* and *A. xanthopylephlebium* extracts) compared to the negative control and positive control using carrageenan-induced paw edema method with p < 0.001. The extract of *C. buchananii* had the ability to inhibit the paw edema stronger than that of other two medicinal plants. Based on the findings of this study, we suggest that more research in this area especially on the secondary metabolite analysis should be further developed due to the high potency of this medicinal plants as a new anti-inflammatory agent based on natural materials.

ACKNOWLEDGEMENTS

This study was funded by the Center for Research and Development of Medicinal and Traditional Medicinal Plants, Indonesian Health Research and Development Agency, Ministry of Health, as part of the implementation of the Advanced Research of Local Ethnomedicine and Local Community-Based Scientific Research Exploration in Indonesia 2016.

REFERENCES

