Short Communication:
The nest characteristics of Wreathed Hornbill (*Rhyticeros undulatus*) in Mount Ungaran, Central Java, Indonesia

MARGARETA RAHAYUNINGSIH*, NUGROHO EDI KARTIJONO, AMIN RETNONINGSIH
Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang. Jl. Taman Siswa, Sekaran, Semarang 50229, Central Java, Indonesia, Tel./fax.: +62-24-8508093, *email: etak_sigid@mail.unnes.ac.id

Manuscript received: 1 September 2016. Revision accepted: 10 July 2017.

Abstract. Rahayuningsih M, Kartijono NE, Retnoningsih A. 2017. Short Communication: The nest characteristics of Wreathed Hornbill (*Rhyticeros undulatus*) in Mount Ungaran, Central Java, Indonesia. *Biodiversitas* 18: 1130-1134. Java has three species of hornbills, one of them is the Wreathed Hornbill (*Rhyticeros undulatus* Shaw, 1811) that can be found mainly throughout on Mount Ungaran, Central Java, Indonesia. The main threats to Wreathed Hornbill population are habitat fragmentation and forest clearing. The large trees used for nesting by the Wreathed Hornbill are usually located in areas of illegal logging. Therefore, it is necessary to study the characteristics of Wreathed Hornbill nests, especially in Mount Ungaran. Eight nests were discovered, six of which were active. The nests were found at 900-1200 m above sea level. Trees that were used as nest sites were between 24-35 m high, and had a diameter of 0.83-1.75 m. Nests were located at heights of 1-27 m, and had a hole diameter of 33-38 cm, hole length of 170-211 cm, entrance width of 4-11 cm, entrance length of 14-39 cm, nest thickness 6-18 cm, and a temperature of 20-21°C. The nest shapes were oval, ellipse, and irregular oval. Commonly, the Wreathed Hornbills used *Syzygium glabratum*, *Syzygium antisepticum*, and *Cratoxylum formosum* for nesting.

Keywords: Habitat fragmentation, Mount Ungaran, nest characteristic, Wreathed Hornbill

INTRODUCTION

Ungaran Mountain is one of the Important Bird Areas (IBA) in Indonesia, particularly in Central Java. The determination of Ungaran Mountain as an IBA due to the presence of the Wreathed Hornbill (*Rhyticeros undulatus* Shaw, 1811) and the Javan Hawk Eagle (*Nisaetus bartelsi* Stresemann, 1924). Hornbills were protected under the Government Regulation No. 5/1990 about Conservation of Natural Resources and Ecosystems, Government Regulation (GG) No. 7/1999 about Preservation of Plants and animals, and GG of Minister of Forestry No 57/Menhut-II/2008. CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora) also categorized the hornbills as fauna in Appendix II, as species that may be traded only under certain conditions, such as scientific research. Nowadays, some of the hornbills encounter many threats that interfere their population. The decline of hornbill population could be caused by several factors, such as loss of native habitat, hunting and trading, and the influence of pesticides, which might damage the reproductive function due to chemical residues that have accumulated through the food chain and caused eggshell thinning. Low public awareness on conserving forests has also influenced the sustainability of the hornbill (Sukmantoro 2002). Disruption of natural habitats, such as habitat fragmentation, forest clearing for coffee or tea plantations, illegal logging, hunting, and trading, has become a serious threat that could interfere with the presence of birds at Ungaran Mountain. Based on initial research by Margareta and Nugroho (2013), the Wreathed Hornbill population at Ungaran Mountain was 14.60 bird/km² with some nest sites. In conclusion, Ungaran Mountain has Wreathed Hornbill natural habitat.

The forest size, habitat structure, fruit abundance and distribution greatly affected the density and distribution of several species of hornbills in Asia (Poonsawad and Kemp 1995; Kemp 1995; Kinnaird et al. 1996). Hornbill populations were affected by habitat disturbance, including illegal logging and forest firing (Johns 1983; Johns 1987; Kinnaird and O’Brien 1998; Cahill and Walker 2000). Therefore, this study aims to elucidate the nest characteristics, nest site, nest shape and habitat around the nest which are built by the hornbills to lay and to incubate their eggs. Data of Wreathed Hornbill are needed within in situ conservation planning and management of wildlife, especially birds. The most important things are sufficient space habitats and the availability of food, water, shelter and breeding grounds.

MATERIALS AND METHODS

The mapping of nests of the Wreathed Hornbill was conducted by the observation of stations including Banyuwindu, Gajah Mungkur, Watu Ondo, and Gunung Gentong stations. The located of the station at the primary and secondary forest of Mount Ungaran, Central Java, Indonesia (Figure 1). The schedule of research was divided into two different schedules, i.e., from May to November 2013 and from August to November 2014 and 2015.
Materials used to conduct the observations included binoculars (Nikon 8 x 30, 8.3”CF WF), a monocular (Nikon 20 x 60), GPS (Global Positioning System) Garmin e-Trex 12 channel, compass, camera, video, CCTV, laptops, tape recorder, a set of tools tree climber, and tally sheet. Nests were discovered by following the males which flew and brought food to the nests, or by finding the location of large trees which had holes and the possibility of a nest. Observations were conducted during the high activity periods of the hornbills, between 7:00-15:00 pm (Margareta and Nugroho 2013). The active nest could be characterized while females entered into the nest. The nest could be observed when females and its offspring out of their nest (the process lasted between 3-4 months). The results were identified to determine its type and measured with several variables (Table 1). The nest characteristics in this study were developed from Staufer and Smith (2004) method which shown in Figure 3 and Figure 4. According to the records of Kinnaird and O’Brien (1998), the breeding period of the Wreathed Hornbill occurs during May - November. The nest condition was determined by climbing a tree and measuring the nest cavity (Figure 2).

Table 1. Variables to determine the nest characteristics of Wreathed Hornbill according to Staufer Method (2004)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree</td>
<td>The type of the tree where the nest is found</td>
</tr>
<tr>
<td>Species</td>
<td>The diameter of the nest tree</td>
</tr>
<tr>
<td>Tree diameter</td>
<td>Measured from the ground surface</td>
</tr>
<tr>
<td>Tree height</td>
<td>Measured from the ground surface</td>
</tr>
<tr>
<td>Nest height</td>
<td>% estimation from the canopy</td>
</tr>
<tr>
<td>Trees percentage</td>
<td></td>
</tr>
<tr>
<td>Nest cavity</td>
<td></td>
</tr>
<tr>
<td>Nest width</td>
<td>Directly measured</td>
</tr>
<tr>
<td>Nest height</td>
<td>Directly measured</td>
</tr>
<tr>
<td>Nest depth</td>
<td>Directly measured</td>
</tr>
<tr>
<td>Nest volume</td>
<td>Width x height x depth</td>
</tr>
<tr>
<td>Width of the nest door</td>
<td>Directly measured</td>
</tr>
<tr>
<td>Height of the nest door</td>
<td>Directly measured</td>
</tr>
<tr>
<td>Area of the nest door</td>
<td>Width x height</td>
</tr>
<tr>
<td>Nest thickness</td>
<td>Directly measured</td>
</tr>
<tr>
<td>Nest orientation</td>
<td>The opening direction of the nest from the main axis</td>
</tr>
</tbody>
</table>
The observers found 8 nests, 6 of which were active, and 2 of which were non-active. However, the observers are able to measure only five of the active nests, while one nest could not be observed (nest No. 7) (Figure 5). Nest locations were scattered in Watuondo (1 nest) and Gunung Gentong (7 nests) (Figure 2). Total nest record, especially on Gunung Gentong from 2010-2016, were 10 nests (Rahayuningsih et al. 2016), but the three of the nest tree on Gunung Gentong were not measurement because the location was difficult to reach.

The trees that were used for nests were: Salam Klontong (Syzygium glabratum) (2 nests), Nagasari (Syzygium antisepticum) (5 nests) and Marong (Cratoxylum formosum)(1 nest). S. glabratum and S. antisepticum belong to families of Myrtaceae. The height of S. glabratum trees ranged between 27-35 m with diameter 1.10-1.75 m, S. antisepticum had heights of 24-32 m and diameter 0.83-1.15 m, while (C. formosum) had height 34 meters with diameter 1.62 m (Table 2).

The height and diameter of the tree as nest habitat represented the body size of Wreathed Hornbill. The observations indicated that Wreathed Hornbills selected specific trees that were taller than 20 meters and had a diameter of approximately 1 meter.

Based on nest locations in Watuondo and Gunung Gentong, Himmah et al. (2010) stated that Watuondo and Gunung Gentong had the potential to be the habitat of breeding Wreathed Hornbills. Watuondo has 52 individual trees/ha with a diameter more than 60 cm, whereas Gunung Gentong has a great amount of biodiversity and single tree.

Based on Figure 2, the location of Wreathed Hornbill nests in Mount Ungaran showed that nests could be found in between 900-1200 meters above sea level. According to Nugroho (2011), Wreathed Hornbills that lived in the area of reforestation were found roughly at 0-165 meters above sea level. Meanwhile, Mackinnon et al. (1998) stated that Wreathed Hornbill usually lived at an altitude of 0-2000 meters above sea level.

Marthy (2008) explained that the Wreathed Hornbill would make nests in trees with a height greater than 20 meters, and with a diameter of approximately 40-267 cm. However, the diameter of trees in Watuondo was more than 60 cm, whereas in Gunung Gentong they ranged from 35 to 60 cm. Datta and Rawat (2004) described the most suitable trees, which were used by Wreathed Hornbills for nesting, had heights of more than 18 meters.

Nest characteristics

The Wreathed Hornbills in Ungaran Mountain generally built the different nest forms (see Table 3 and Figure 5). Poonsawad (1993) said that Wreathed Hornbills regularly utilized taller and larger trees for nesting, and selected specific trees such as *Dipterocarpus* and *Eugenia*. However, on Mount Ungaran, Wreathed Hornbill usually built nests on *S. glabratum* and *S. antisepticum*. Both tree species are the part of *Eugenia* family, namely Myrtaceae. We believe that the tallest tree was chosen for nesting by the hornbills likely happened as a result of storm damage, that resulted in damage, including broken branches, which in some cases would naturally form a hole. In addition, the strongest trees can survive longer than other trees, so the possibility of using it as a nest was higher than other trees.

Based on the nesting characteristics of Hornbill nests, Datta and Rawat (2004) explained that there were differences in nest characteristics among the Wreathed Hornbill (*Rhyticeros undulatus*), Great Hornbill (*Buceros bicornis*), and Oriental Pied Hornbill (*Anthracoceros albirostris*). The differences included the height of the nests, nest thickness, and the shape of the nest.
The average nest height for Wreathed Hornbill in Java and Sumatra ranged between 18-26 m and the height and nest inner width were between 45-47 x 60-85m, and nest shape was generally rounded (Marthy 2008). These results supported Datta and Rawat (2004) which explained that the form of Wreathed Hornbill nests was generally oval. Poonswad (1993) specified the shape of Wreathed Hornbill nests was generally elongate or oval. The nests were used by females to incubate their eggs and to guard their offspring until they are able to fly. The females stayed at the nest, while males hunted and feed their females. During the observation, the females always closed to the nest hole using ground, mud and a small gap left to receive food from the males. In addition, the small gap was also used to protect their eggs or offspring from predators. When the females wanted to leave the nest, then the females unloaded the soil, mud, so the gap became wider than before.
ACKNOWLEDGEMENTS

The authors would like to thank the Directorate General of Higher Education and Culture of Indonesia for funding the research. The expression of thanks is also addressed to the Association of Natural Conservation and Indonesian Institute Science and Perhutani for giving the research license. Thanks to Misbahul Munir and Jamal for helping with the analysis.

REFERENCES

