Taxonomical position of Annonaceae species from East Java, Indonesia: Collections of Purwodadi Botanic Garden based on morphological character

DEWI AYU LESTARI1,2*, RODIYATI AZRIANINGSIH1,3**, HENDRIAN HENDRIAN2,3***

1Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya. Jl. Veteran, Malang, 65145, East Java, Indonesia. Tel./Fax.: +62-341-554403. *email: chunyang_dee@yahoo.co.id, ♥♥♥ rodiyati@ub.ac.id
2Purwodadi Botanic Garden, Indonesian Institute of Sciences. Jl. Raya Surabaya - Malang Km.65 Purwodadi, Pasuruan 67163, East Java, Indonesia. Tel./Fax. +62-343-615033, +62-341-426046. **email: r_hendrian@yahoo.com

Abstract. Lestari DA, Azrianingsih R, Hendrian H. 2017. Taxonomical position of Annonaceae species from East Java, Indonesia: collections of Purwodadi Botanic Garden based on morphological character. Biodiversitas 18: 1067-1076. Morphological characters are one of the most consistent of taxonomical markers are used in Annonaceae today. One of the plants collections from Annonaceae species which came from East Java and conserved in Purwodadi Botanic Garden-Indonesian Institute of Sciences, Purwodadi, and East Java has some problems in morphological characters. It has some problems that causing the taxonomical position of these species are not clear, i.e. presence of unidentified plant until level species. The aim of this study is to classify and identify of species that have not been identified in order to taxonomical position be clearly. Material samples are used Annonaceae collection from East Java and Magnoliaceae as out-group. Samples of these plants were observed qualitatively and quantitatively through morphological characters were analyzed using cluster analysis and then synapomorphy, autapomorphy and apomorphy character analysis to identify and to determine the taxonomical position. The results showed that there are 4 tribes and two sub-families in the dendrogram. Tribe includes Miliuseae, Xylopiaceae, Annoneae and Uvariae, as well as sub-family of Malmeoideae and Annonoideae. Sub-family distinguished by inner petal and habit, sub-family of Malmeoideae has connate inner petals and trees habit, sub-family of Annonoideae has free inner petal and woody climber habit, some of the trees. Species are unidentified suspected as a different species based on the proximity of group formed. There are five plant species that have not been identified to the species level. These species can be recommended the taxonomical position and proposed of species name through dendrogram with the name of the specimen. Specimen 1 is predicted to have close relations with Annona muricata, specimen 2 is predicted to have close relations with Miliusa macropoda, specimen 3 is predicted to have close relations with Artabotrys uncinatus and identified as Uvaria micrantha, specimen 4 is predicted to have close relations with Figisticum latifolium and specimen 5 is predicted to have close relations with Saccopetalum horsfieldii, because these species are in one group.

Keywords: Annonaceae, morphology, taxonomical position, Purwodadi Botanic Garden

INTRODUCTION

Morphological character is one of the markers used for the grouping of plant taxonomy besides of the other characters such as anatomy, micromorphology, histology, cytology, palynology, embryology, chemistry, and biogeography. This is caused by morphological characters have a consistent character, can be derived, non-susceptible to environmental changes, showing clear delineation of other similar character and character states, and have valuable evolution (Bhattacharyya, 2009). Generally, these characters are specifically derived in certain groups and one of them is Annonaceae family. According to the Engler and Prantl classification system, the family of Annonaceae belongs to the sub-class of Dialyptalae is belonging to primitive plants and characterized by unclear boundaries between sepals, petals, and parts of fruit (Tijitrosepomo, 2013).

Hutchinson (1973) states that Annonaceae is an ancestor of Magnoliaceae, but it has more advanced characters. Some similarities between morphological characters between Annonaceae and Magnoliaceae includes numerous of hollow, type of stoma is parasitic, bisexual flowers and trimerous, adhere microspores, type of pollen is monosulcate, free and spiral carpels, type of endosperms is cellular and follicle fruits. This similarity of character indicates the close relationship between Annonaceae and Magnoliaceae. Morphological characters are belonging only to Annonaceae family includes distichous leaves arrangement, cross-section of stem is striate, stems or twigs when exfoliated will produce a unique aroma (aromatic), leaves have no stipules, aestivation of petal is valvate, endosperm ruminate, arillus seeds, berries or drupe fruits, and vessels with simple perforated fields (Kessler, 1993; Maas et al. 2007; Bhattacharyya, 2009; Wu et al. 2011). According to Chatrou et al. (2012), Annonaceae family is divided into four sub-families i.e. Anaxagoreoideae, Ambavioideae, Annoneae and Malmeoideae based on the molecular marker. The four subfamilies are distinguished by the morphological characteristics of habit, leaf arrangement, carpels of flowers and fruit, the form of apical connective
prolongation, connective extension of anthers, internal staminodia, orbicules, ovules, endosperm ruminations, tip shape of stamen, monopercarp abscission, monopercarp dehiscence or indehiscent, shape of seed, integument of middle seed and the number of basic chromosomes. This distinguishing character of subfamilies refers to many observations and research from Maas and Westra (1984), Westra (1985), Morewet and Le Thomas (1988), van Heusden (1992), van Setten and Koek-Noorman (1992), Johnson and Murray (1995), Doyle and Le Thomas (1996), Svoma (1998), Johnson (2003), Maas, Westra and Chatrou (2003), Tsou and Johnson (2003), Scharaschkin and Doyle (2005, 2006), Su and Saunders (2006), Maas, Westra and Vermeer (2007), Couvreur (2009), Huysmans et al. (2010), Surveswaran et al. (2010) and Weerasooriya and Saunders (2010). This morphological character becomes a distinctive character in sub-family of Annonaceae. Sub-families of Annonoideae and Malmeoideae are divided into several tribes and distinguished by characteristics from structure of gynoecium, aestivations of petals, sum of petals, relatively size of outer and inner petals, symmetrical flowers or inflorescence, tip of connective, placenta and number of ovules, position of flowers or inflorescence, phyllotaxis type, pollen form and absence or present of indumentum (Koek-Noorman et al. 1990; Chatrou et al. 2012; Doyle and Thomas, 2012).

The taxonomical position of Annonaceae species is still debatable, especially in Annonaceae species are grouping based on morphological characters. Chatrou et al. (2012) classify Annonaceae species based on characters of generative organ, while Couvreur et al. (2012) grouped by characters of vegetative organ and fertile characters during their generative phase. Several categories in his infrafamily have problems. The classification at these levels is very far when compared to another family, although the grouping of Annonaceae family tends to be stable (Kessler, 1995). Therefore, determination of taxonomical position for unidentified species in Annonaceae family could be identified by a dendrogram. The importance of taxonomical position is crucial to the classification of species in plant taxonomy for it’s clear identity.

Some species of Annonaceae are ex-situ conserved and collected by Purwodadi Botanic Garden (PBG) - Indonesian Institute of Sciences as one of the plant conservation institutions. Annonaceae family are collected from various regions in Indonesia, such as Java (especially East Java), Borneo, Sumatra (Riau), Sulawesi, Maluku (Buru and Seram Island), Papua and East Nusa Tenggara (Lestarini et al. 2011). One of the Annonaceae collections has problems and especially are originates from East Java, where the generative character does not fully appear, have variations in certain species such as Orophea (Lestari, 2011) and unidentified species. Unidentified species from Annonaceae collections that originate from East Java in PBG are five specimens. Through morphological character analysis, the taxonomical position of Annonaceae species from East Java can be identified and determined further.

The aim of this research is to classify and identify the unidentified species as name verification so that the taxonomical position of it can be clearly known. If species identity of it has been known, it is useful in conservation effort of Annonaceae especially are originates from East Java in PBG.

MATERIALS AND METHODS

Study site
Research was conducted in Purwodadi Botanic Garden (PBG), Indonesian Institute of Sciences, Pasuruan, East Java, Indonesia, for morphological observation and Laboratory of Plant Taxonomy, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang, East Java, Indonesia (for data analysis of morphological characters), since 2011 until March 2017. This research takes a long time because flowering time of material samples are not simultaneously and most of the Annonaceae in PBG are flowering at the end until beginning of the year.

Materials
Plant material used for the studied were a collection of Annonaceae species explored from East Java (Figure 1) and conserved in PBG. As many as 28 species of Annonaceae from East Java (as in-group) and two species of Magnoliaceae (as out-group) are shown in Table 1.

Procedures
Morphological characters were observed by phenetic character includes qualitative and quantitative characters. Qualitative characters are observed fifty-five characters and quantitative characters are observed fifteen characters (van Heusden, 1992; Kessler, 1993; Priyanti, 2001; Bioversity International, 2008; Folorunso and Olorode, 2008). Each plant sample is repeated based on a number of plant specimens in PBG.

Data analysis
Data are obtained included in determination table and further scored with a reference number "0" for characters that are not found in samples of plants were observed and the number "1" for the characters that encountered in plant samples was observed (Table 2). Data that has been scored then analyzed using statistical program PAST (Paleontological Statistics) ver. 1.34 by cluster analysis method (Jukes-Cantor similarity index) to produce a dendrogram. The result of dendrogram then analyzed with synapomorphy, autapomorphy and apomorphy characters to know the distinguishing character of each taxon of Annonaceae species collections from East Java.

RESULTS AND DISCUSSION

Dendrogram of Annonaceae species based on morphological character
Based on data analysis results, it can be seen that outline is formed from dendrogram showing the division of four tribes and two sub-family. Tribes include Miluacea,
Xylopiae, Anoneae and Uvariae, as well as sub-family of Malmeoideae and Annonoideae (Figure 2).

Differences of morphological character from Malmeoideae and Annonoideae sub-family

Differences of morphological character from Malmeoideae and Annonoideae sub-family are indicated by character of inner petal (Figure 3) and habit (Figure 4). Sub-family of Malmeoideae has connate inner petal and mitriform shape, but sub-family of Annonoideae has free inner petal and valvate shape. Besides that, Habit of Malmeoideae sub-family is tree but Annonoideae sub-family is woody climber.

Suggestion of species identity from unidentified plant samples of Annonaceae

Unidentified species of Annonaceae from East Java are 5 species and namely is specimen 1, specimen 2, specimen 3, specimen 4 and specimen 5. Morphological flowers of unidentified species are shown in Figure 5. The first and second row show the unidentified species of Annonaceae from East Java, then the third and fourth row show the species predicted from unidentified species based on analysis of dendrogram (Figure 2).

Discussion

Tribes of Miliuseae divided into 4 groups: group of *Pseuduvaria reticulata*-Mitrephora reticulata-Orophea hexandra, group of *Orophea enneandra*-Mitrephora javanica-Meiogyne cylindrocarpa, group of *Popowia* sp.- *Miliusa macrophala*-Saccopetalum horsfieldii-Polyathia sp., and *Mitrephora polypyreana* is separately but still incorporated in tribes of Miliuseae. Morphological characters in Miliuseae tribes based on similarity (synapomorphy) of habit of trees, development of the main stem is monopodial, location of branches on the main stem is rhythmic, direction of stem growth is perpendicular (erectus), direction of branch growth is plagiotropic, smell of bark is fragrant, composition of leaves is compound leaves, leaf arrangement is alternate, texture of sepal is not fleshy, sepal thickness is thin, number of whorls is two, no hooked, number of petals, stem diameter and width of leaves. The similarity of these characters is grouped in sub-family Malmeoideae. Genus of *Saccopetalum* is a synonym from genus *Miliusa* thus included in one group (Bennett 1840). According to Chatrou et al. (2012), sub-family of Malmeoideae is characterized by a distinctive character in their sub-family that have habit of trees, flower.
Table 1. Plant material samples of Annonaceae collection from East Java, Indonesia and outgroup are observed (Lestarini et al. 2011)

<table>
<thead>
<tr>
<th>Species name</th>
<th>Voucher number</th>
<th>Location</th>
<th>Origin</th>
<th>Sum of specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stelechocarpus burahol (Blume) Hook.f. & Thomson</td>
<td>P19770246</td>
<td>IV.A.I.5</td>
<td>East Java</td>
<td>3</td>
</tr>
<tr>
<td>Annona muricata L.</td>
<td>P1977091</td>
<td>XVIII.C.28</td>
<td>Lawang, Malang</td>
<td>3</td>
</tr>
<tr>
<td>Saccopetalum horsfieldii Benn.</td>
<td>P1978074</td>
<td>XVIII.C.2</td>
<td>Prigi, Trenggalek</td>
<td>2</td>
</tr>
<tr>
<td>Specimen 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artabotrys blumei Hook.f. & Thomson</td>
<td>P19790775</td>
<td>XVIII.C.8</td>
<td>Sendangbiru, Malang</td>
<td>1</td>
</tr>
<tr>
<td>Mitrephora reticulata (Blume) Hook.f. & Thomson</td>
<td>P19810125</td>
<td>XVIII.C.20</td>
<td>Pulau Sempu</td>
<td>2</td>
</tr>
<tr>
<td>Orophea enneandra Blume</td>
<td>P198105274</td>
<td>XVIII.C.25</td>
<td>Meru Betiri, Banyuwangi</td>
<td>1</td>
</tr>
<tr>
<td>Mitrephora polypyrena (Blume) Miq</td>
<td>P19811116</td>
<td>XVIII.C.7</td>
<td>Gn. Kukusan, Lumajang</td>
<td>1</td>
</tr>
<tr>
<td>Fissistigma latifolium (Dun.) Merr.</td>
<td>P19820662</td>
<td>XVIII.C.30</td>
<td>Tahan</td>
<td>1</td>
</tr>
<tr>
<td>Anomianthus dulcis (Dun.) J. Sinel</td>
<td>P19820611</td>
<td>XVIII.C.6</td>
<td>Biwane Island</td>
<td>2</td>
</tr>
<tr>
<td>Orophea enneandra Blume</td>
<td>P19821169</td>
<td>XVIII.C.26</td>
<td>Lebakharjo, Malang</td>
<td>2</td>
</tr>
<tr>
<td>Magnolia candolli (Blume) H.Keng</td>
<td>P19821171</td>
<td>XVIII.D.II.2</td>
<td>Lebakharjo</td>
<td>1</td>
</tr>
<tr>
<td>Monoon lateriflora (Blume) Miq</td>
<td>P198302228</td>
<td>XVIII.C.19</td>
<td>Situbondo</td>
<td>1</td>
</tr>
<tr>
<td>Specimen 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uvaria schizocalyx Back.</td>
<td>P19840317</td>
<td>XVIII.C.35</td>
<td>Banyuwangi</td>
<td>1</td>
</tr>
<tr>
<td>Uvaria concava Tejsm. & Binn.</td>
<td>P19840321</td>
<td>XVIII.C.23</td>
<td>Banyuwangi</td>
<td>1</td>
</tr>
<tr>
<td>Uvaria purpurea Blume</td>
<td>P19840389</td>
<td>XVIII.C.39</td>
<td>Bliar</td>
<td>1</td>
</tr>
<tr>
<td>Specimen 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitrephora javanica Back.</td>
<td>P19850135</td>
<td>XVIII.C.56</td>
<td>Ht. Jolo Sutro, Bliar</td>
<td>1</td>
</tr>
<tr>
<td>Artabotrys uncinatus (Lam.) Merr.</td>
<td>P19850160</td>
<td>XVIII.C.40</td>
<td>Ht. Tumpak, Malang</td>
<td>1</td>
</tr>
<tr>
<td>Orophea enneandra Blume</td>
<td>P198502227</td>
<td>XVIII.C.34</td>
<td>Ngliep, Malang</td>
<td>1</td>
</tr>
<tr>
<td>Orophea enneandra Blume</td>
<td>P19850249</td>
<td>XVIII.E.8</td>
<td>Banyuwangi</td>
<td>2</td>
</tr>
<tr>
<td>Orophea enneandra Blume</td>
<td>P19860266</td>
<td>XVIII.E.3</td>
<td>Tempursari, Lumajang</td>
<td>2</td>
</tr>
<tr>
<td>Uvaria rufa Blume</td>
<td>P198803196</td>
<td>XVIII.C.47</td>
<td>TN. Baluran, Situbondo</td>
<td>1</td>
</tr>
<tr>
<td>Specimen 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseuduvaria reticulata (Bl.) Merr.</td>
<td>P19910930</td>
<td>XVIII.C.55</td>
<td>Tempursari, Lumajang</td>
<td>4</td>
</tr>
<tr>
<td>Michelia champaca (L.) Baill. Ex Pierre var. alba</td>
<td>P1997110091</td>
<td>XIV.G.I.10</td>
<td>Malang</td>
<td>1</td>
</tr>
<tr>
<td>Miluusa macropoda Miq.</td>
<td>P199712239</td>
<td>XVIII.E.36</td>
<td>TN. Alas Purwo, Banyuwangi</td>
<td>2</td>
</tr>
<tr>
<td>Meiogyne cylinrocarpa (Bueck) Back.</td>
<td>P19991125</td>
<td>XVIII.E.43</td>
<td>TN. Baluran, Situbondo</td>
<td>2</td>
</tr>
<tr>
<td>Meiogyne cylinrocarpa (Bueck) Heusden</td>
<td>P2005118</td>
<td>XIX.B.I.62</td>
<td>TN. Alas Purwo, Banyuwangi</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2. Character and character state in Annonaceae species

<table>
<thead>
<tr>
<th>Character and character state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habit; 1. tree, 2. shrub, 3. woody climber</td>
</tr>
<tr>
<td>Crown shape; 1. irregular, 2. cone, 3. cylindrical, 4. umbrella, 5. graded</td>
</tr>
<tr>
<td>Presence or absent of hooked; 1. absent, 2. present</td>
</tr>
<tr>
<td>Age of the plant (year); 1. 1-15 years, 2. 16-30 years, 3. 31-45 tahun</td>
</tr>
<tr>
<td>Crown diameter (cm); 1. 1-250 cm, 2. 251-500 cm, 3. 501-750 cm, 4. 751-1000 cm, 5. 1001-1250 cm</td>
</tr>
<tr>
<td>Plant height (cm); 1. 1-500 cm, 2. 501-1000 cm, 3. 1001-1500 cm, 4. 1501-2000 cm, 5. 2001-2500 cm</td>
</tr>
<tr>
<td>Stem diameter (cm); 1. 1-25 cm, 2. 26-50 cm, 3. 51-100 cm, 4. 101-150 cm, 5. 151-200 cm</td>
</tr>
<tr>
<td>Stem development; 1. monopodial, 2. sympodial</td>
</tr>
<tr>
<td>Location of branches on main stem; 1. rhythmic, 2. constantly</td>
</tr>
<tr>
<td>Direction of stem growth; 1. perpendicular (erectus), 2. climbing (scandens)</td>
</tr>
<tr>
<td>Direction of branch growth; 1. ortotrophic, 2. plagiotrophic</td>
</tr>
<tr>
<td>Stem color; 1. light green, 2. grey, 3. dark grey, 4. brown, 5. other</td>
</tr>
<tr>
<td>Color of young branches; 1. light green, 2. green, 3. dark green, 4. other</td>
</tr>
<tr>
<td>Color of bark; 1. light grey, 2. grey, 3. dark grey, 4. brown, 5. other</td>
</tr>
<tr>
<td>Smell of bark; 1. fragrant, 2. not fragrant</td>
</tr>
<tr>
<td>Outer bark; 1. light brown, 2. brown, 3. dark brown, 4. grey, 5. light green, 6. green, 7. dark green</td>
</tr>
<tr>
<td>Inside bark; 1. light green, 2. green, 3. dark green, 4. green yellowish, 5. light brown, 6. yellow, 7. yellow brownish</td>
</tr>
</tbody>
</table>
Leaf

Leaf composition: 1. single, 2. compound

Leaf arrangement: 1. alternate, 2. opposite, 3. spiral

Length of leaf stalk (petiole), (cm): 1. 0-1-0.5 cm, 2. 0.6-1 cm, 3. 1-1.5 cm, 4. 1.6-2 cm, 5. 2.1-2.5 cm

Diameter of leaf stalk (petiole), (mm): 1. 0, 0-1 mm, 2. 1.1-2 mm, 3. 2,1-3 mm, 4. 3,1-4 mm

Indumentum of leaf stalk: 1. glabrous, 2. simple hairs, 3. stellate hairs

Leaf texture: 1. membranaceous, 2. herbaceous, 3. perkamentous, 4. coriaceous

Leaf indumentum: 1. glabrous, 2. simple hairs, 3. stellate hairs

Shape of leaf blade: 1. ovate, 2. elliptic, 3. obovate, 4. lanceolate, 5. other

Shape of leaf base: 1. acute, 2. rounded, 3. obtuse, 4. cordate

Shape of leaf tip: 1. acute, 2. rounded, 3. acuminate

Leaf length (cm): 1. 0-10 cm, 2. 11-20 cm, 3. 21-30 cm

Leaf width (cm): 1. 0-1-0.5 cm, 2. 0.6-1 cm, 3. 1-1.5 cm

Leaf thickness (mm): 1. 0, 0-0.2 mm, 2. 0.21-0.3 mm, 3. 0.31-0.4 mm, 4. 0.41-0.5 mm, 5. 0.51-0.6 mm

Pubescence on surface of adaxial leaves: 1. absent, 2. present

Pubescence on surface of abaxial leaves: 1. absent, 2. present

Color of mature leaves: 1. light green, 2. green, 3. grayish green, 4. dark green, 5. other

Color of young leaves: 1. yellow, 2. light green, 3. green, 4. dark green, 5. red, 6. purple, 7. red purplish, 8. other

Edge of leaf: 1. entire, 2. undulate

Number of lateral nerves: 1. 1-5 pairs, 2. 6-10 pairs, 3. 11-15 pairs, 4. 16-20 pairs

Leaf-blade venation: 1. submerged, 2. intermediate, 3. Raised

Petal

Expansion of petal: 1. reflected, 2. spreading, 3. erect, 4. connivent

Aestivation of petal: 1. valvate, 2. reduplicate-valvate, 3. imbricate, 4. Apert

Number of petal: 1. 1-5 pcs, 2. 6-10 pcs, 3. 11-15 pcs

Number of whorls: 1. one, 2. two, 3. three

Color of outer petal: 1. white, 2. yellow, 3. yellowish, 4. green, 5. greenish, 6. red, 7. reddish to pinkish, 8. pink, 9. brown, 10. purple, 11. purplish, 12. orange, 13. grey, 14. black, 15. dot with colored spot, 16. other

Color of inner petal: 1. white, 2. yellow, 3. yellowish, 4. green, 5. greenish, 6. red, 7. reddish to pinkish, 8. pink, 9. brown, 10. purple, 11. purplish, 12. orange, 13. grey, 14. black, 15. dot with colored spot, 16. other

Size of petal: 1. short (<0.5 cm), 2. long (>25 mm)

Indumentum of petal: 1. glabrous, 2. simple hairs, 3. stellate hairs

Stamen

Number of stamen: 1. little (1-5), 2. intermediate (6-12), 3. many (>12)

Shape of stamen: 1. long and narrow, 2. short and broad, 3. distinct, 4. a shield-like apical prolongation of the connective, 5. broad connective shielding the anthers

Type of stamen: 1. uvaroid, 2. miliusoid

Stamen length: 1. short (0.1-7 mm), 2. long (>7 mm)

Color of stamen: 1. white, 2. cream, 3. (orange-)yellow, 4. orange, 5. red, 6. (red-)brown, 7. brown, 8. purple

Texture of stamen: 1. not fleshy, 2. fleshy
Figure 2. Dendrogram of Annonaceae species from East Java; Mgc=Magnolia candollii and Mic=Michelia champaca var. alba (outgroup), Mp=Mitrephora polypyrna, Mr=Mitrephora reticulata, Pr=Pseuduvaria reticulata, Oh=Oropea hexandra, Oe=Oropea enneandra, Mj=Mitrephora javanica, Mc=Meiogyne cylindrocarpa, Mm=Miliusa macropoda, Sh=Saccopetalum horsfieldii, Ab=Artabotrys blumei, Pl=Monoon lateriflora, Sb=Stelechocarpus burahol, Am=Annona muricata, Ad=Anomianthus dulcis, Fl=Fissistigma latifolium, Us=Uvaria schizocalyx, Uc=Uvaria conca, Ur=Uvaria rufa, Au=Artabotrys uncinnatus, and Up=Uvaria purpurea (in-group)

Figure 3. The character of inner petal as differences sub-family of Malmeoideae and Annonoideae; a. Mitrephora polypyrna, b. Pseuduvaria reticulata, c. Oropea enneandra and d. Meiogyne cylindrocarpa - connate inner petal, e. Uvaria schizocalyx, f. Anomianthus dulcis, g. Mitrephora sp. and h. Fissistigma latifolium - free inner petal
Figure 4. The character of habit as differences sub-family of Malmeoideae and Annonideae; A. Saccopetalum horsfieldii, B. Mitrephora polypyrena - habit of the tree, C. Uvaria schizocalyx, D. Mitrephora sp. - habit of woody climber

Figure 5. Species predicted from unidentified species in material samples of Annonaceae from East Java, Indonesia. A. Specimen 1, B. Specimen 2, C. Specimen 3, D. Specimen 4, E. Specimen 5, F. Annona muricata, B. Miliusa macropoda, C. Artabotrys uncinatus, D. Fissistigma latifolia, E. Saccopetalum horsfieldii
arrangement is spiral phyllotaxis, genital flowers is hermaphrodite (sometimes (andro) dioecious, rarely (andro) monoecious, shape of the apical connective prolongation is peltate-truncate, peltate-apiculate, tongue-shaped or not, connective extension of anthers nonseptate, staminodes inside part in a rare, indumentum simple hairs and rarely T-shaped hairs, no bracts and location of flowers in parts of plant is terminal or axillary. Chaowasku et al. (2014) classify each genus in tribes of Miliuseae based on forms of pollen, which is genus of Mitrephora and Pseuduvaria has the form of pollen disulculate; tetrad, genus of Orophea, Meteorge, Popowia, Miliusa and Polyalthia has the form of pollen is disulculate; monads, and genus of Stelchocarpus has form of pollen is cryptoaperturate/disulculate; monads. Based on both of these groupings, it is dominant distinguished by habit and generative character especially on flowers (especially in staminodes, connective apical prolongation and pollen characters). Results of this study is adding the other characters to grouping by each genus, there are development of the main stem is monopodial, location of branches on the main stem is rhythmic, direction of stem growth is perpendicular (erectus), direction of branch growth is plagiotropic, smell of bark is fragrant, composition of leaves is compound, leaf arrangement is alternate, texture sepals is not fleshy, sepals thickness is thin, number of whorls is two, no hooked, number of petals, stem diameter and width of leaves.

Tribes of Annoneae are divided into two groups: a group of Polyalthia lateriflora-Artabotrys blumei-Stelchocarpus burahol and group of Annona muricata-Annorna sp. Both of groups are grouping based on similarity of smell bark is fragrant, composition of leaves is compound, leaf arrangement is alternate, indumentum of leaf and petiole is glabrous, shape of leaf tip is acuminate, pubescence on abaxial and adaxial leaf surface do not exist, color of mature leaves is dark green, leaf margin is entire, sepals and petals pubescence does not exist, size of sepals is short, number of whorls is two, fusion of petal is free, size of petal is intermediate, forms of inner petal is valvate, floral glands do not exist, indumentum on petals is glabrous, number of stamens is many, indumentum of peduncle flowers is glabrous, number petal, age of the plant and stem diameter. According to Chatrou et al. (2012), Artabotrys blumei included in tribes of Xylopiae (sub-family Annonoideae), Polyalthia lateriflora and Stelchocarpus burahol included in tribes of Miliuseae (sub-family Malmoeoideae). But in this study, a grouping of both species showed differences. Additionally, a tribe of Annoneae in dendrogram was one group with tribes of Miliuseae. Chatrou et al. (2012) partially breaks into tribes of Annoneae, and joined by tribes of Uvariae who are grouping in sub-family of Annonoideae. This is because in this study using a combination of vegetative and generative character (i.e. flowers), so that possibility of this groups can be different.

Tribes of Uvariae are divided into three groups: a group of Anomianthus dulcis-Fissistigma latifolium-Oxymitra sp., a group of Uvaria schizocalyx-Uvaria concava-Uvaria rufa and a group of Mitrephora sp.-Artabotrys uncinatus-Uvaria purpurea. The third groups are grouping based on similarity of habit of lianas (woody climbers), development of the main stem is sympodial, location of branches on the main stem is constantly, direction of stem growth is climbing (scandens), direction of branch growth is orthotropic, smell of bark is fragrant, composition of leaves is compound, leaf arrangement is alternate, leaf margin is entire, fusion of sepals and petals is free, texture sepals are not fleshy, thickness of sepals is thin, size of sepals is short, number of whors is two, no floral glands, no glands, number of petals, High Plant Non Branch (or TTBC), stem diameter and amount of secondary vein leaves. According to van Heusden (1992) and Zhou et al. (2010), most of the genus of Uvaria have morphological characters stellate hairs, valvate aestivation of petal and basally connate. Genus of Uvaria has close relationships with several other genera such as Anomianthus, Cyathostemma, Ellipeia, Ellipeiosp and Rauwenhoffia in morphologically and genetically. This is consistent with results of Annonaceae species grouping are tested and predicted have a proximity kinship.

Tribes of Annoneae and Uvariae are included in sub-family of Annonoideae because it grouped by similarity character of habit (tree or liana), leaf arrangement is spiral or distichous phyllotaxis, genital of flowers sometimes (andro) dioecious and rarely (andro) monoecious, shape of apical connective prolongation is peltate-truncate, peltate-apiculate, rarely tongue-shaped or not, staminodes of inside part is rarely, indumentum is simple hairs (rarely stellate hairs) for Annoneae and stellate hairs for Uvariae, location of flowers is terminal or axillary, pollen is inaperturate and sometimes sulculate (Chatrou et al. 2012).

Group has the closest distance (0.02) is Orophea enneandra 1 and 2, so that both of species have a high similarity and different (autapomorphy) in character of crown shape, leaf shape and amount of secondary vein leaves. The distance between sub-family Malmeoideae and Annonoideae is 0.37; so that similarity between this sub-family is small and has the same character on smell bark is fragrant, the composition of leaves is compound, leaf arrangement is alternate, a number of whors are two, stem diameter and a number of petals.

Apomorph character is a key character or distinctive characters which only have in in-group and can be inherited by his out-group. In this study, the character of out-group are derived inside pepagan which was light brown, floral glands, the color of young leaves is red and color of the outer petal is yellowish. Their characters are derived fro out-group has evolved especially on Orophea enneandra species, because has the closest distance.

Based on flowers morphological characters, a grouping of sub-family from Malmeoideae and Annonoideae are distinguished by the fusion of the petal character. Sub-family of Malmeoideae has conenate inner petal (merged), while sub-family of Annonoideae has free inner petal (separately), as shown in Figure 3. The other characters that distinguish for both of sub-family are a habit, sub-family of Malmeoideae has tree habit and sub-family of Annonoideae mostly has a habit of woody climbers (lianas) and some of the trees (Figure 4). It can be used as an early
identifier to distinguish of both subfamilies, besides of the other vegetative and generative character.

Several species of material plant samples are used in this study have not been identified to species level; there are specimens 1, specimen 2, specimen 3, specimen 4 and specimen 5. However, species is same predicted with specimen 3 because it has the same physically in morphology and is in one group, namely Artabotrys uncinatus. Artabotrys uncinatus has a different character than the actual morphology description. Tan and Wiart (2014) said that description of Artabotrys morphology is a woody climber, leaves are single, alternate, coriaceous, orthotropic shoots, hooked is presence, white or yellow flowers, fragrant, sepal valvate and free, petals valvate and free that composed on two whorls, monocarps fruit, cylindrical and elliptical. This description is different with the real morphology character. This species is predicted to the species of Uvaria micrantha, based on morphological characters of globose flower buds, with petal size was small and free. This species distantly related to the genus of Uvaria because it has almost same morphological characters are stellate hairs, valvate sepals, all of petals part is imbricate on two whorls and pollen is inaperture monads (Utteridge, 2000; Zhou et al. 2009). Specimen 2 is predicted to have close relations with Miliusa macropoda, specimen 5 is predicted to have close relations with Saccopetalum horsfieldii, specimen 1 is predicted to have close relations with Annona muricata and specimen 4 is predicted to have close relations with Fissistigma latifolium because these species are in one group (Figure 5). Determination of material plant samples that have not been identified still requires further research, in order to more clearly identify so that the taxonomical position can be known. Besides of confirmation with morphological character, the taxonomical position of this species can be known based on confirmation from molecular marker to accurately species identity.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Indonesian Institute of Sciences for funding this study under scholarship of Karyasiswa LIPI, and PBG staff i.e., Matrani and Dwi Marko for helping and discussing during morphological observation.

REFERENCES

Tjitrosoepomo G. 2013. Plant taxonom y (Spermatophyta). Gadjah Mada University Press, Yogyakarta [Indonesia].

