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Abstract. Saleky D, Setyobudiandi I, Toha HA, Takdir M, Madduppa HH. 2016. Length-weight relationship and population genetic of
two marine gastropods species (Turbinidae: Turbo sparverius and Turbo bruneus) in the Bird Seascape Papua, Indonesia. Biodiversitas
17: 208-217. Turbo sparverius and Turbo bruneus are herbivorous grazers gastropod that lived on the rocky intertidal area, which have
a role in maintaining algae on the intertidal ecosystem. Local people in Papua have exploited them for food and souvenirs. Even though
this exploitation might affect their genetic diversity and population, a study of the genetic structure of these species has not been
previously reported. This study aimed to analyze the morphometric, genetic diversity, population structure and connectivity of T.
sparverius and T. bruneus in coastal water of West Papua, Indonesia. The results showed that the growth pattern of T. sparverius and T.
bruneus in all populations were negative allometric, which means that weight gain was slower than length. Haplotype diversity value of
all population T. sparverius and T. bruneus were 0.657-0.705 and 0.739-0.816, respectively. In addition, the haplotype diversity of each
population showed a high level of diversity. The genetic structure was found in all population of T. sparverius and T. bruneus with FST

value-0.037-0.201 and 0.031, respectively. Population structure and phylogenetic tree showed the closeness of genetic due to gene flow
between both T. sparverius and T. bruneus. Genetic distance value between populations T. sparverius and T. bruneus are very low were
0.002 and 0.003-0.004, respectively. High genetic similarity might occur due to condition and direction of current flow mediating of
gene transport among population, and the similarity of habitats in each population.
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INTRODUCTION

The bird seascape of West Papua, including
Cendrawasih Bay and Raja Ampat Archipelago, are located
in the Coral Triangle region, which has the most diverse
mollusks (Veron et al. 2009). Turbo sparverius, common
name the corded turban, is a species of sea snail, gastropod
marine mollusk in the family Turbinidae. The gastropods
Turbo sp. or locally named “bia mata bulan”, including T.
sparverius and T. bruneus are herbivorous gastropods
whose feed on algae living in the intertidal rocky area,
often found in crevices of rocks or reef flat (Lee and Chao
2004; Quinones and Michel-Morvin 2006). T. sparverius
and T. bruneus have a thick operculum with various
coloration such as black, dark green, white or brownish
(Dharma 2005). The operculum has a plate shape that
necessary to protect the animals when they withdrawals
their self into the shell (Quinones and Michel-Morvin
2006). Despite their functional role in the ecosystem, some
of Turbo species such as T. marmoratus, T. setosus and T.
argyrostomus became a target species at South Pacific
(Kikutani et al. 2002). Also, T. bruneus have been
exploited for their meets and shells in the Soccoro

Archipelago, Mexico (Yamaguchi 1993; Quinones and
Michel-Morvin 2006).

Shell’s morphology has various shapes that contribute
to species identification, classification and taxonomic
information (Chiu et al. 2002; Moneva et al. 2012; Caill-
Milly et al. 2012). The analysis of morphological
characters such as the length-weight relationship of species
is useful in marine organism management and also
important to determine population condition (Turan 1999;
Udo 2013). The difference of gastropod shell morphology
are influenced by several factors such as substrate
composition (Tan 2009), adaptation to waves exposure
(Boulding et al.1999), pollution (Chiu et al. 2002; Urra et
al. 2007), self-protection from of predator, and depth
variation (Olabarria and Thurston 2003; Marquez et al.
2011). The length-weight relationship and condition factor
have been broadly investigated in gastropod to obtain the
index of the physical condition of populations and evaluate
habitat quality (Albuquerque et al. 2009). Species
identification based on shell’s morphometric is quite
difficult because morphology and color patterns of the shell
are affected by the changes in environment factor (Mauro
et al. 2003). Therefore, some gastropods identification
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based on genetic analysis are conducted to clarify the
former founding (Marquez et al. 2011), and also other
marine organisms (Madduppa et al. 2014; Prehadi et al.
2015; Sembiring et al. 2015; Jefri et al. 2015).

Genetic diversity becomes an important part of
population (Hoffman et al. 2009) because genetic diversity
gave information about the changes in nature and also in
the monitoring of biodiversity and conservation (Schwartz
et al. 2006). Genetic diversity defines the ability of the
population to adapt to environment condition (Booy et al.
2000). More adapted species produced more genetic and
morphological variation in response to environmental
changes (Taylor and Aarssen 1988). Population with a high
level of genetic diversity has more chance to survive
(Bonde et al. 2012). Basic knowledge about genetic
diversity is useful for conservation because low level of
genetic diversity would increase the extinction risks (Jena
et al. 2011).

Analysis of population structure aims to examine the
dynamic of the natural populations (Hoffman et al. 2009).
Life history traits and gene flow are strongly affected
population structure (Storfer 1999; Hoffman et al. 2010)
but tracking gene flow and larval dispersal in the marine
environment are quite difficult (Weersing and Toonen
2009). Each organism has different dispersal pattern in
response to various environmental and oceanographic
conditions (Crandall et al. 2008). Habitat type, geography,
and natural selection are also an important factor in shaping
population structure and differentiation (Colson and
Hughes 2004).

Genetic connectivity plays a central role in conservation
because it helps maintain population and restoration from
damages (Neel 2008), connectivity is also an important
concern in almost all conservation plan (Luque et al. 2012).
Benthic organism often shows a complex life cycle, and the
connectivity among the population is maintained by
individual transfer during pelagic larval phase (Cowen and
Sponaugle 2009). Knowledge about the complexity of
larval dispersal was critical in conservation of marine
ecosystem because pelagic larval stage and larval dispersal
together form the genetic structure of an organism (Avise
1998; Grantham et al. 2003; Madduppa et al. 2014).

The study of morphometric, genetic diversity,
population structure and connectivity of T. sparverius and
T. bruneus in West Papua has not been previously reported.
These kinds of studies are necessary for marine
management and conservation (Japaud et al. 2013).
Therefore, this study aimed to analyze length-weight
relationship, genetic diversity, population structure, and
connectivity of T. sparverius and T. bruneus in West
Papua.

MATERIALS AND METHODS

Studied species
Turbo is marine gastropod mollusk in the family

Turbinidae (Williams 2007). Turbo sparverius, common

name the corded turban, is a species of sea snail,
characterized by their shell. The solid, imperforate shell has
an ovate-conic shape with a dirty white or greenish and
grows to a length of 75 mm. This marine gastropod species
is distributed in the southwest Pacific and off the
Philippines (Rosenberg 2015). Turbo bruneus, common
name the Brown (Pacific) dwarf turban or the little burnt
Turbo, has a length of the shell varies between 20 mm and
50 mm. This gastropod occurs in the Red Sea, in the
Central Indo-Pacific, in the Western Pacific Ocean, off East
India, the Philippines and off Western Australia (Rajagopal
and Mookherjee 1978; Williams 2007).

Sample collection and morphometric measurement
A total of 179 specimens from four localities

throughout the West Papua (Manokwari, Sorong, Raja
Ampat and Teluk Wondama) were collected expeditions
from October 2014 to January 2015 (Figure 1). Turbo
sparverius were collected from Manokwari (72 specimens),
Teluk Wondama (30), Sorong (3) and T. bruneus were
collected from Raja Ampat (52), and Manokwari (22). The
sample was collected from the rocky intertidal area during
low tide. Indonesian Shells II (Dharma 1992) and Recent &
Fossil Indonesian Shell (Dharma 2005) were used to
identify samples morphologically. The total length and
total weight of gastropod shell were measured for each
sampled individual. Foot muscle tissues from T. sparverius
and T. bruneus were collected, and preserved in 96%
ethanol for subsequent analysis.

DNA extraction, amplification and sequencing
Genomic DNA for each sample was extracted using

extraction kit (Qiagen kit. Cat No. 69504) or Chelex
(Walsh et al. 1991). A fragment of mitochondrial
Cytochrome Oxidase subunit-I gene (COI) was amplified
using the following primer set: LCO1490 5’-
GGTCAACAAATCATAAAGATATTGG-3’ and
HCO2198 5’-TTAACTTCAGGGTGACAAAAAATCA-3’
(Folmer et al. 1994). Polymerase Chain Reaction (PCR)
was conducted in 25 µL reaction volume containing 1-4 µL
template DNA, 2.5 µL of 10x PCR buffer (Applied
Biosystems), 2,5 μL dNTP (8 mM), 2 µL MgCl2 (25 mM),
0.125 µL AmplyTaq Red™ (Applied Biosystems), 1.25 µL
of each primer (10 mM), 1 µL 1x BSA, and 13.5 µL
ddH2O. PCR conditions were: initial denaturation at 94 °C
for 15 s, followed by 40 cycles of denaturation at 95 °C for
30 s, annealing at 50 °C for 30 s, and extension at 72 °C for
45 s. The final extension step was conducted at 72 °C for 10
min. The quality of PCR products was assessed by agarose
gel electrophoresis and ethidium bromide staining and
visualized using UV transilluminator. All good PCR
products were sent to Berkeley Sequencing Facility, USA.

Data analysis
Length-Weight Relationship of T. sparverius and T.

bruneus were analyzed using linear regression. The length-
weight relationship is the most widely used method for
estimating biomass of benthic invertebrates. This analysis
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Figure 1. Sampling location ( ) of T. sparverius dan T. bruneus in West Papua, Indonesia: Raja Ampat, Sorong, Manokwari, and Teluk
Wondama, Papua, Indonesia

could presume whether there was a difference in size due to
differences in environmental conditions (Schefler 1987;
Benke et al. 1999). The length-weight relationships of these
species were described by the following equation W = aLb,
where W is body weight (gram), L is body length (mm) and
a and b are constant values (Effendie 1979). If b = 3
indicated an isometric growth, which means the length and
weight increase equally. If b ≠ 3 indicated an allometric
growth, which b < 3 indicated an increase in length was
faster than weight, and b > indicated an increase in the
weight was faster than the length (Effendie 1979).

Sequences were aligned and edited in Mega 6 (Tamura
et al. 2013). Genetic distance (D) was calculated within and
between populations. A Neighbour-Joining (NJ) tree was
constructed in Mega 6 (Tamura et al. 2013) based on
Kimura 2-parameter model, and 1,000 bootstrap replicates.
Additional sequences data of T. sparverius, T. bruneus, and
T. setosus were added from GeneBank (Table 1). T. setosus
was utilized as an outgroup in phylogenetic reconstruction.
DnaSP 5.10 (Rozaz et al. 2003) was used to analyzed a
number of the haplotype (H), haplotype diversity (Hd)
(Nei, 1987), and nucleotide diversity (π) (Lynch and
Creasef 1990). Population differentiation was assessed with
Fixation index (Fst) (Excoffier et al. 1992) using Arlequin
3.5 (Excoffier and Lischer 2009). Consider investigating
the phylogenetic relationship among haplotype, a minimum
spanning tree was constructed in Network 4.6.1
(http://www.fluxusengineering.com).

RESULTS AND DISCUSSION

Length-weight relationship
The growth pattern of Turbo sparverius and Turbo

bruneus were presented in Table 2. The result from the
length-weight calculation of the T. sparverius produced
equation W = 0.001L2.654 with R² = 0.847 (Manokwari), w
= 0.017L1.939 with R2 = 0.553 (Teluk Wondama), and W =
0.00017L3.091 with R2 = 0.996 (Sorong). The analysis of
total length and weight showed a linear relationship with
the line equation Y = 2.4672x-2.6569 with R² = 0.799.
Figure 2 presented the linear regression graph of the total
length and weight of the T. sparverius. Based on obtained
r² values, the contribution of shell length to weight was
84.7% (Manokwari), 55.3% (Teluk Wondama), 99.6 %
(Sorong), and 79.9 % (all populations). These values
suggested that body weight can be used to estimate the size
of the shell length. The b values were less than 3 indicated
the growth pattern of the T. sparverius was negative
allometric, which means weight gain was slower than the
length. T. sparverius from Sorong showed positive
allometric growth pattern (b > 3), which means weight gain
were faster than the length. This value could be due to low
sample size (3 samples).

Length-weight relationship of T. bruneus described by
equation W = 0.00054L2.802 with R² = 0.983 (Raja Ampat)
and W = 0.05004L1,548 with R2 = 0.734 (Manokwari). The
analysis of total length and weight showed a linear
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relationship with the line equation y = 2.2954x-2.4604 with
R² = 0.8724. Linear regression graph of the total length and
weight of the T. bruneus was presented in Figure 2.

Based on obtained R² values, the contribution of shell
length to weight was 98.30% (Raja Ampat), 73.4 %
(Manokwari) and 87.2 % (all populations). These values
also suggest that body weight can be used to estimate the
size of the shell length.

Phylogenetic relationship
Phylogenetic analysis of T. bruneus resulted in two

main clades with high bootstrap support (99). Clade 1
consisted of T. bruneus from West Papua and Clade 2 was
T. bruneus from Malaysia. The close relationship between
T. bruneus population from West Papua might be due to
high sequence similarities. Phylogenetic tree of T.
sparverius showed a group of all population into 2 main

Table 1. GenBank data information ot the T. sparverius, T. bruneus and T. setosus, included in this analysis, location and accesion
number from National Center for Biotechnology Information (NCBI)

Species Location Acc. GenBank References

Turbo bruneus Sabah, Malaysia AM403930 Williams 2007
Turbo bruneus Sabah, Malaysia AM403931 Williams 2007
Turbo sparverius Longkang, Taiwan AM403911 Williams 2007
Turbo setosus Longkang, Taiwan AM403910 Williams 2007

Tabel 2.  Length-weight relationship of T. sparverius and T. bruneus showing the number of samples (n), constant values (a), the index
of the growth values (b), correlation values (r), determinant values (R2) and the growth pattern.

Species Site n a b r R2 Growth pattern

Sorong 3 0.00017 3.091 0.998 0.996 Positive allometric
Manokwari 72 0.00104 2.654 0.921 0.847 Negative allometric
Teluk Wondama 30 0.01678 1.939 0.744 0.553 Negative allometric

T. sparverius

All populations 105 0.0022 2.467 0.894 0.799 Negative allometric
Raja Ampat 52 0.00054 2.802 0.992 0.983 Negative allometric
Manokwari 22 0.05004 1.548 0.857 0.734 Negative allometric

T. bruneus

All populations 74 0.00346 2.295 0.934 0.872 Negative allometric

Table 4. Genetic distance (D) within and between population of T. sparverius and T.  bruneus

Species Genetic distance Site Manokwari Teluk Wondama Sorong

Manokwari 0.002 - -
Teluk Wondama - 0.002 -

Within population

Sorong - - 0.002
Manokwari - - -
Teluk Wondama 0.002 - -

T. sparverius

Between population

Sorong 0.002 0.002 -

Manokwari Raja Ampat
Manokwari 0.004 -Within population
Raja Ampat - 0.003
Manokwari -

T. bruneus

Between population
Raja Ampat 0.003 -

Table 5. Pairwise FST values of T. sparverius and T. bruneus

Species Population Manokwari Teluk Wondama Sorong

Manokwari - - -
Teluk Wondama 0.037 - -

T. sparverius

Sorong 0.201 0.146 -

Raja Ampat Manokwari
Raja Ampat - - -

T. bruneus

Manokwari 0.031 - -
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clades, supported by high bootstrap values (99). Clade 1
composed of the population from Papua and clade 2
consisting of the population from Taiwan. Low gene flow
possibly caused genetic differentiation between Papua and
Taiwan due to distant geographic location. Overall,
phylogenetic analysis revealed that all population of T.
sparverius and T. bruneus lacked in genetic structuring
indicated by low geographic partition between all samples
(Figure 3). These were also supported by the low genetic
distance between population (Table 4) and low FST values
(Table 5).

Genetic diversity
A 656 bp fragment from Cytochrome Oxidase I (COI)

was obtained from all samples (T. sparverius and T.
bruneus) with a similarity of 98-99%. Similar fragment
length was also found in family Turbinidae (Williams,
2007). In 656 bp DNA fragment of T. sparverius and T.
bruneus there are many nucleotide difference
(polymorphism) caused by point mutation. It is called point
mutation because the mutation only occurs at a single
nucleotide (Xiao et al. 2007). Transitions are substitution
mutation between A and G (purines) or between C and T
(pyrimidines), transversion occurs when nucleotide of
purines changed to pyrimidines or vice versa (Graur 2003).
There were five transition mutations found in T. sparverius
consist of 1 synonymous substitution and four non-
synonymous substitutions. The numbers of codons in T.
sparverius were 218 with four mutated amino acids at
codon position of 13, 35, 110, and 138. Meanwhile, in T.
bruneus, 15 point mutations were found; consist of 14
transition mutations and one transversion mutation. The
nucleotide substitution in T. bruneus consists of nine non-
synonymous substitutions and six synonymous
substitutions. The number of codons in T. bruneus was 218
with nine amino acid mutations at codon position of 51, 73,
132, 138, 168, 198, 201, 203, and 211. The occurrence of
transition mutation are more often found than transversion
mutation (Santos et al. 2003) and the transitional rate
between pyrimidines (C and T) are higher than that
between purines (A and G) (Castro et al. 1998). Mutations

can occur in either somatic or germ-line cells. Somatic
mutations are not inherited so that they can be disregarded
in an evolutionary or genetic context (Graur 2003).

The number of haplotypes and various types of
haplotype were influenced genetic diversity of a population
(Akbar et al. 2014). A total number of haplotype found in
T. sparverius and T. bruneus were 7 and 13 haplotypes,
respectively (Table 3). T. sparverius from Manokwari had
six haplotypes (20 samples), Teluk Wondama had four
haplotypes (15 samples) and two haplotypes (3 samples)
from Sorong. T. bruneus from Raja Ampat had eight
haplotypes (17 samples) and Manokwari had six
haplotypes (18 samples).

Each population showed a high level of haplotype
diversity (Hd) ranged from 0.657 to 0.816 (Table 3). The
highest haplotype diversity of the T. sparverius was found
in Teluk Wondama (0.705) and the lowest was found in
Manokwari (0.657). The highest haplotype diversity of the
T. bruneus was found in Raja Ampat (0.816) and the lowest
was found in Manokwari (0.739). Nucleotide diversity (π)
of T. sparverius ranged from 0.0018 (Manokwari) to
0.0021 (Teluk Wondama and Sorong). Meanwhile,
nucleotide diversities of T. bruneus ranged from 0.0027
(Raja Ampat) to 0.0037 (Manokwari). This study showed
that nucleotide diversities of T. sparverius and T. bruneus
were lower than other gastropod species such as Lunnela
gradulata (π = 0.0046) (Chiu et al. 2013).

Table 3. Genetic diversity of T. sparverius and T. bruneus
accessed from the number of the haplotype (Hn), haplotype
diversity (Hd), and nucleotide diversity (π), N indicated the
number of samples for each site

Genetic diversitySpecies Population N
Hn Hd π

Manokwari 20 6 0.657 0.0018
Wondama Bay 15 4 0.705 0.0021
Sorong 3 2 0.667 0.0021

T. sparverius

All populations 38 7 0.691 0.0020
Raja ampat 17 8 0.816 0.0027T. bruneus
Manokwari 18 6 0.739 0.0037
All populations 35 13 0.785 0.0032

Figure 2. Linear regression of total length and weight from 105 individuals T. sparverius (A) and 74 individuals T. bruneus (B)
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Figure 3. Phylogenetic tree of T. sparverius (39 sequences) and T. bruneus (37 sequences) using Neighbour-Joining (NJ) method with
Kimura 2-parameter model and 1,000 bootstraps.

Population structure
Genetic distance within individuals of T sparverius and

T. bruneus were 0.0-0,6 % and 0.0-1.1 %, respectively.
Genetic distance between T. sparverius and T. bruneus was
10,6 %. Genetic distance within individual was less than
2% while genetic distance among species ranged from 7-
12% (Jusmaldi et al. 2014). Meanwhile, according to
Brown et al. (1982), the genetic distance among species
ranged from 9-19%.

Genetic distance within and between population of the
T. sparverius in Manokwari, Teluk Wondama, and Sorong
was 0.002 (Table 4). Meanwhile, genetic distance within
population of T. bruneus in Manokwari and Raja Ampat
were 0.004 and 0.003, respectively. Genetic distance
between populations of T. bruneus was 0.003 (Table 4).

Pairwise FST test showed low level of genetic
differentiation with FST values ranged from-0.037 to 0.201

(Table 5). AMOVA indicated that P-value of T. sparverius
and T. bruneus were 0.23 and 0.17, which mean these
population showed non-significance genetic differentiation
among population (P > 0.05).

Population connectivity
The highest number of haplotype of the T. sparverius

was found in Manokwari (Figure 4). Among these
populations, there were four shared haplotypes such as, H1,
H2, H3, and H6. Private haplotypes were found in Teluk
Wondama (H7) and Manokwari (H4 and H5). The
haplotype network of the T. bruneus showed that Raja
Ampat has the highest number of haplotype, and there was
only one shared haplotype (H1) (Figure 4). Genetic
distance and FST showed that all populations of T.
sparverius and T. bruneus had close genetic relationship.



BIODIVERSITAS 17 (1): 208-217, April 2016214

Figure 4. Haplotype network of the T. sparverius (left) and T. bruneus (right) from different locations in Papua. Each haplotype
represents by a circle, whereas the size indicated the haplotype frequencies. Colors filling correspond to different sampling locations:
Manokwari (yellow), Teluk Wondama (blue), Sorong (green)

Discussion
Length-weight relationship

The length-weight relationship are widely used in
biological fisheries research for describing the change in
the size of the individual, showing the growth pattern of an
organism, obtaining the index of physical condition of
populations and evaluate habitat quality (Gayon 2000;
Albuquerque et al. 2009). This study showed that the
growth pattern of T. sparverius and T. bruneus from West
Papuan were negative allometric. The b values were less
than 3, indicated the growth pattern of the T. bruneus was
negative allometric, which means weight gain was slower
than the length. A different result was obtained from the T.
sparverius from Sorong which showed positive allometric
growth pattern. T. sparverius were exploited by local
people in Sorong and the sampling site was near the
tourism object, these facts might be responsible for the low
sample size found in this area. Negative allometric growth
pattern means that weight gain was slower than the length.
It is indicated that the collected individuals are the young
individual. The Growth in younger individuals more
focused on the growth of the shell so that the shell growth
is faster than the growth in weight (Mulki et al. 2014).
Differences of the growth patterns on the same species is
caused by several factors such as the number of samples,
sex differences, and other external factors such as
environmental conditions suitable for the development of
the growth of these species (Innal et al. 2015).

This study has a consistent result with Ramesh et al.
(2009), which also found negative allometric growth
pattern in T. bruneus. Various gastropod species also
showed negative growth pattern such as Lambis lambis
(Jaykhumar et al. 2011), Achatina fulica (Albuquerque et
al. 2009), Litorina sp. (McKinney et al. 2004), and
Tympanotonus fuscatus (Udo 2013). The morphometric
variation found in mollusks seemingly triggered by various
factor such as, tidal variation, food availability, changes in
seasonality, and sexual maturity (Ramesh et al. 2009).

Population genetic
Genetic distance analysis showed that all population of

T. sparverius and T. bruneus were closely related. Genetic
similarities of these species are probably triggered by ocean
currents that act as a medium for gene transfer among those
species. Lin and Liu (2008) found genetic similarities may
exist due to ocean currents, high larval dispersal, and an
appropriate habitat condition. Genetic diversity of marine
biota in North Papua probably affect by New Guinea
Coastal Current (Kashino et al. 2007) because planktonic
larval dispersal and ocean current influence genetic
exchange between populations (Chiu et al. 2013).
Differences in environmental condition resulted in
morphological changes, anatomical, and phylogenetic of a
population (Twindiko et al. 2013). According to Chiu et al.
(2013), genetic diversity can be influenced by two factors
such as over-exploitation and habitat condition. High
genetic diversity of individual within the population,
increase the ability of the population to respond to
environmental changes or exploitation (Akbar et al. 2014).
T. sparverius and T. bruneus are widely used by local
people for food or merchandise, which could reduce the
genetic diversity of these species.

Pairwise FST test showed a low level of genetic
differentiation in the current study, implied that those
populations were genetically similar. Similar results was
found in Echinolittorina ziczac (Diaz-Ferguzon et al. 2011)
and Cittarium pica (Diaz-Ferguzon et al. 2010) which
showed low FST values ranged from-0.007 to 0.04, and
from-0.07 to 0.106, respectively. They also found that
adjacent populations tend to have a low-value FST, while
the greater distances tend to have higher FST value (Diaz-
Ferguzon et al. 2011). Genetic heterogeneity increases with
increasing distance between populations (Wolf et al. 2000).
Coralliophila violacea showed low average FST values
(0.078), this is probably caused by the ability of larval
dispersal and the pattern of ocean current (Lin and Liu
2008).
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Gene flow and geographic isolation were affected by
geographical distance and environment complexity.
Genetic homogeneity of T. sparverius and T. bruneus
seems to be caused by short distance between all sampling
sites. Other possible explanation related to New Guinea
Coastal Current (NGCC), which might facilitate larval
dispersal across study areas. Genetic similarities might also
exist due to the similarity of habitats in each population.
Urra et al. (2003) found that gastropods originating from
different habitat can have different both in genetic and
morphology.

Shared haplotypes could be due to larval dispersal
following ocean currents. Turbo sp. experienced a larval
stage in its life cycle. T. marmoratus required 4 days to
change from egg phase until larval settlement (Yamaguchi
1993). Dwiyono et al. (2001) revealed that the required
time of T. marmoratus from the egg stage to become
benthic organisms was about 60 hours. Such a long time
larval duration provides an opportunity for this species to
distribute widely via New Guinea Coastal Current (NGCC)
(Kashino et al. 2007). New Guinea Coastal Current
(NGCC) is a surface current that flows along the northern
coast of Papua (Kuroda 2000). Genetic connectivity between
populations of the benthic organism mainly occurred at
pelagic larval stage (Cowen and Sponaugle 2009).

Analysis of genetic distance and FST showed that all
populations of T. sparverius and T. bruneus had a close
genetic relationship, possibly caused by the short distance
between sampling sites (63-415 km) and geographic
condition that are relatively open. Wyrtki (1961) found that
circulation pattern in the northern coast of Papua has a
strong seasonal variability, flowing continuously to the
Philippines. Ocean current condition and pelagic larval
stage were potential factors that play a role in the dispersal
of organisms, for example, dispersal distance of Gaimardia
trapesina could reach 1300-2000 km (Helmuth et al. 1994).
Isolated population tends to have low population size and
high extinction risk compared to connected populations
(Noreen et al. 2009). Ecological isolation and geographic
structure were also affected population genetic structure
(Crispo and Chapman 2008). Adjacent populations usually
showed more genetic similarities than distant populations
(Palumbi 2003). Geographical isolation, population history,
oceanographic condition, and ecological traits can lead to
high variations in the genetic diversity among populations
(Chiu et al. 2013; Silva et al. 2013). Similar microhabitat
(rocky intertidal) contribute to the occurrence of the genes
mixing between populations T. sparverius and T. bruneus.
Albaina et al. (2012) stated that microhabitat was an
important factor in the dispersal of species, even though
these species possess similar life cycle and dispersal
potential.

We conclude that growth pattern in all populations of T.
sparverius and T. bruneus was negative allometric, which
means that weight gain was slower than length. All
populations showed high haplotype diversity and genetic
diversity. Phylogenetic reconstruction and population
structure analysis indicated that genetic homogeneity was
dominant among the population of T. sparverius and T.

bruneus, which possibly caused by gene flow between
populations.
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